

LIMERICK

LONDON

DUBLIN

CONSULTING G www.csconsulting.ie

CS CONSULTING

GROUP

Engineering Services Report

Strategic Housing Development

Former O'Devaney Gardens Site, Dublin 7

Client: Bartra ODG Limited Job No. B089

May 2021

ENGINEERING SERVICES REPORT

Strategic Housing Development, Former O'Devaney Gardens Site, Dublin 7

CONTENTS

1.0		2			
2.0	SITE LOCATION AND PROPOSED DEVELOPMENT	3			
3.0	STORMWATER DRAINAGE	7			
4.0	FOUL DRAINAGE	4			
5.0	POTABLE WATER	7			
6.0	SITE EXCAVATIONS AND FOUNDATION CONSTRUCTION	9			
7.0	RESPONSE TO PLANNING BOARD'S OPINION	3			
Appendix A: DCC's drainage records.					

Appendix B: Met Eireann Data and Attenuation Calculation

- Appendix C: Stormwater WinDes Design
- Appendix D: Foul WinDes Design

Appendix E: Irish Water Confirmation of Feasibility & Design Acceptance Letter

Appendix F: Stormtech Attenuation Brochure

This Report has been prepared by CS Consulting for the benefit of its Client only. The contents of this Report are shared with interested parties for information only and without any warranty or guarantee, express or implied, as to their accuracy, reliability or completeness. This Report cannot be relied on by any party other than the party who commissioned it.

File Location: j:\b_jobs\job-b089\b_documents\c_civil\a_cs reports\1 - planning application reports\esr\odg-csc-zz-xx-rp-c-0007-p2 esr 20210514.docx

BS 1192 FIELD		ODG-CSC-Z	-ZZ-XX-RP-C-0007-P2 ESR 20210514				
Job Ref.	Aut	hor	Reviewed By	Authorised By	Issue Date	Rev. No.	
B089	GS		RFM	DR	12.05.2020	Draft	
B089	GS		RFM	DR	24.07.2020	P1	
B089	RFN	1	RFM	DR	05.05.2021	P2	

1.0 INTRODUCTION

Cronin & Sutton Consulting Engineers (CS Consulting) have been commissioned by Bartra ODG Limited to prepare an Engineering Services Report to accompany a planning application for a residential development at O'Devaney Gardens, Stoneybatter, Dublin 7.

This report assesses the proposed development under the following headings:

- Foul Drainage Infrastructure;
- Stormwater Drainage Infrastructure;
- Potable Water Infrastructure; and

In preparing this report, CS Consulting has made reference to the following:

- Dublin City Development Plan 2016–2022;
- Dublin City Strategic Flood Risk Assessment 2016 2022;
- Regional Code of Practice For development works, Version 6;
- Irish Waters Code of Practice for Water Infrastructure;
- Irish Waters Code of Practice for Wastewater Infrastructure;
- Greater Dublin Strategic Development Study;

The Engineering Services Report is to be read in conjunction with the engineering drawings and documents submitted by CS Consulting and with the various additional information submitted by the other members of the design team.

2.0 SITE LOCATION AND PROPOSED DEVELOPMENT

2.1 Site Location

The proposed development site is located at O'Devaney Gardens, Stoneybatter, Dublin 7. The site is located in the administrative jurisdiction of DCC and has a total area of approximately 5.20 ha.

Figure 1 – Location of proposed development site (map data & imagery: EPA, OSi, OSM Contributors, Google)

The location of the proposed development site is shown in Figure 01 above; the indicative extents of the development site, as well as relevant elements of the surrounding road network, are shown in more detail in Figure 02.

The site is bounded to the east by Saint Bricin's Military Hospital and residential properties, to the west by future development lands and residential properties and on all other sides by residential properties.

Figure 2 – Site extents and environs (map data & imagery: NTA, OSi, OSM Contributors, Microsoft)

2.2 Existing Land Use

The subject site had previously been used for residential housing, in the form of a number of flat complexes. These have been removed from site. The subject lands are predominantly flat in nature with no water course or other physical features of note on the lands. To the north west of the lands a housing development is currently under construction. This estate and the services currently serving same will be required to be re-located into the proposed development.

2.3 Proposed Development

The proposed Strategic Housing Development comprises the following elements of relevance to the present Traffic and Transport Assessment:

- 43no. dwelling houses (including 20no. duplex units);
- 1,004no. apartments;
- crèche with gross floor area of 489m²;
- community space with gross floor area of 157m²;
- convenience retail units with total gross floor area of 1,393m²; and
- café unit with gross floor area of 155m².

The subject development's internal road network shall tie into the existing surrounding road network at the existing O'Devaney Gardens / North Circular Road junction (north of the development site), the repositioned O'Devaney Gardens / Montpelier Gardens junction (south of the development site), and the existing connection between O'Devaney Gardens and Thor Park (east of the development site). Provision is also made for pedestrian and cyclist connectivity onto Ross Street and onto Ashford Cottages, at the development site's northern boundary. The development includes 273no. car parking spaces, 3no. crèche set-down spaces, 2,000no. bicycle parking spaces, and 11no. motorcycle parking spaces.

A detailed description of the proposed development is provided in the Site Notice.

For the purposes of the present assessment, it is assumed that the subject development shall be completed and occupied by the year 2023.

2.4 Proposed Services Alterations

The subject lands currently has both the remnants of drainage/watermain infrastructure from the sites previous land use and drainage/watermain infrastructure recently completed as part of the housing development to the north west of the subject lands. Subject to agreement with Irish Water and DCC these services will be diverted and re-located into the subject sties network. Without loss of service or capacity for the current user. The proposed diversions will include the re-routing of foul /storm water and potable water supplies. In addition, temporary attenuation storage for the housing development currently under development will be required to be incorporated into the proposed new storm water drainage systems and attenuation systems. Refer to CSC drawings for details of same: - ODG-CSC-XX-XX-DR-C-0015 / 0039 & 0047.

3.0 STORMWATER DRAINAGE

3.1 Existing Storm Water Arrangements

Following review of DCC's drainage records indicates that there are:

- A 225mm diameter concrete combined sewer on O'Devaney Gardens, flowing west to east;
- A 300-375mm diameter concrete combined sewer on O'Devaney Gardens, flowing north to south towards Montpelier Gardens;
- A 300mm diameter concrete combined sewer which connects the end of the 225mm diameter concrete combined sewer to 300mm diameter concrete combined sewer on O'Devaney Gardens, both mentioned previously. Note that this 300mm diameter concrete combined sewer has been indicated traversing the site;
- A 225mm diameter uPVC combined sewer on Montpelier Gardens, which flows towards Infirmary Gardens;
- A 225mm diameter vitrified clay combined sewer, which flows towards Infirmary Gardens;
- A 375mm diameter concrete combined sewer on Montpelier Gardens, which flows from O'Devaney Gardens to towards Infirmary Gardens and;
- A 225mm diameter stormwater sewer at east of Montpelier Gardens, which flows through Montpelier Park, Montpelier Drive and Montpelier Hill, and finally connected to a combined sewer on Infirmary Gardens.

Please refer to **Appendix A** for the DCC's drainage records.

3.2 Proposed Storm Water Alterations

The subject lands currently have both the remnants of stormwater infrastructure from the sites previous land use and stormwater infrastructure recently completed as part of the housing development to the north west of the subject lands. Subject to agreement with Irish Water and DCC these services will be diverted and re-located into the subject sties network. Without loss of service or capacity for the current user. The proposed diversions will include the re-routing of storm water and, in addition, temporary attenuation storage for the housing development currently under development will be required to be incorporated into the proposed new storm water drainage systems and attenuation systems.

3.3 Proposed Storm Water Arrangements

In accordance with DCC requirements, storm water shall be managed in two phases.

The **first** is to restrict storm water run-off from the proposed development to greenfield run-off rates. The **second** aspect to be included in new applications is to incorporate sustainable urban drainage systems ('SuDs') proposals into the scheme. The 'SuDs' concept requires that storm water quality is improved before disposal and, where applicable, storm water is discharged into the ground on site.

The proposed new storm water drainage arrangements will be designed and carried out in accordance with:

- i) The Greater Dublin Strategic Drainage Study Volume 2,
- ii) The Greater Dublin Regional Code of Practice for Drainage Works,
- iii) BS EN 752:2008, Drains & Sewer Systems Outside Buildings,
- iv) Part H, Building Drainage of The Building Regulation.

The 'GDSDS' & the local authorities Regional Code of Practice for Drainage Works require that four main criteria to be provided by the developer.

- Criterion 1: River Water Quality Protection satisfied by providing interception storage and treatment of run-off within 'SUDS' features e.g. landscaping and green roof areas.
- Criterion 2: River Regime Protection satisfied by attenuating run-off from the site.
- Criterion 3: Level of Service (flooding) for the site satisfied by the site being outside the 1000 year coastal and fluvial flood levels. Pluvial flood risk addressed by development designed to accommodate a 100-year extreme storm as noted in 'GDSDS'. Planned flood routing for storms greater that 100-year level considered in design and development run-off contained on site.
- Criterion 4: River Flood Protection attenuation and/or long-term storage provided within the 'SuDs' features.

In accordance with the requirements of DCC all new developments are to incorporate the principles of 'SuDs'. The 'SuDs' principles require a two-fold approach to address storm water management on new developments.

The **first** aspect is to reduce any post development run-off to predevelopment discharge rates. The development is to retain storm water volumes predicted to be experienced during extreme rainfall events. This is defined as the volume of storm water generated during a 1 in 100 year storm event increased by 20% for predicted climate change factors.

To ensure an accurate calculation of the required attenuation for the site Met Eireann was contacted to provide:

a) The SAAR (Standard Annual Average Rainfall) for the area: 727mm/year.

- b) The sliding duration table for the site indicating the 1:100 year rainwater intensities to be used.
- c) Soil type value obtained from the Flood Studies Report, (for the subject lands this has been established as soil type 4.

These parameters allow the Q-Bar, greenfield run-off rate, to be calculated. The Q-Bar value for the site is 5.00 l/sec/Ha. Therefore, the allowable discharge rate off site for any given storm even will be limited to 29l/sec. Note the proposed scheme will incorporate into the drainage system the existing housing developments attenuation area, this increases the sits overall area to 5.8Ha, giving a total discharge rate of 29.0l/sec for all storm event.

The proposed development is to retain storm water volumes predicted to be experienced during extreme rainfall events. This is defined as the volume of storm water generated during a 1 in 100 year storm event increased by 20% for predicted climate change factors. The attenuation volume requirement of 4042m³ for the 1 in 100 year storm event. See **Appendix B** for the Met Eireann Data and Attenuation Calculation.

The proposed storm water network has been designed using the WinDes Micro Drainage Program, to check for suitable capacity in the network to ensure no on flooding takes place for the extreme storm events. See **Appendix C** for WinDes design, & simulation calculations for the proposed storm water system.

The outfall into the public system will be onto the 225mm diameter stormwater sewer on Montpelier Gardens. The last public manhole shall be constructed in accordance with Local Authority's requirements and the storm water flow will be restricted by the use of a flow control device to limit the flow to the public system.

Please refer to CS Consulting Drawing **ODG-CSC-XX-XX-DR-C-0013 / 0014** for drainage details.

3.4 Proposed Sustainable Urban Drainage System ('SuDs') Measures

The **second** aspect is the policy of the Local Authority is to include 'SuDs', for all new applications. The aim is to provide an effective system to mitigate the adverse effects of storm water run-off on the environments, through enhanced quality systems and on local infrastructure to aid in preventing downstream flooding. The features proposed shall reduce run-off volumes, pollution concentrations and enhance groundwater recharge and biodiversity.

The proposed 'SuDs' features shall consist of:

- a) Green-roof this allows the roof areas of the proposed apartments to use a Sedum type covering to absorb the first 'flush' from rainfall events.
 Typically, 5-10mm of rain can be retained on the sedum surface. As more intense rain is experienced the green roof can overflow from the roof through down pipes and into the schemes main drainage runs.
- b) Water-'butts' when the rain water from the green roofs and from the roofs of the housing units is drained to ground floor it will be directed into rainwater storage units, commonly referred to as water butts. The retained rainwater can then be stored and re-used for local landscaping and maintenance purposes. It would not be envisioned that the captured rainwater would be reused in the apartment units for public health reasons.
- c) Permeable Paving this system allows rainwater to be directed into carparking bays whereby the rainwater can filter through gaps in the paving blocks and percolate into the subsoil. The area which can be drainage is a subject to the infiltration characteristics of the subsoil,

which is established following ground investigation testing on site in accordance with BRE 365.

- d) Land drains it is also proposed to use land drains to the rear of individual dwellings to allow the percolation of rainwater locally, again subject to the infiltration rates of the subsoil, which has to be established. The land drains will be fitted with an overflow system to allow excess storm water to be directed into the main drainage runs.
- e) Swales & Tree Pits it is proposed to allow storm water to be directed locally into tree pits for prevent this storm water from entering the main drainage network. As the tree pits can only accommodate relatively small surface areas this proposal cannot be used to drain the site as a whole but can play an important part in contributing to the overall 'SuDs' strategy.
- f) Main Attenuation Tank As noted above the for extreme storm events, will require a dedicated system to contain the storm water flows generated during a 1-in-100 year storm, increased by 20%. It is proposed to use a proprietary underground storage tank for this purpose. The tank will be placed under open spaces, not roads so the open space above can be enjoyed while not preventing the schemes ability to retain the storm water.
- g) Low Water Usage Appliances It is also worth highlighting that low water usage appliances will also be utilised to aid in the reduction of water usage on the development.
- h) Oil Separator Prior to final disposal of storm water from the main drainage network into the public system the stormwater will pass through an oil separator to remove any hydrocarbons which may have entered the network from car parking areas.

The combination of the above noted elements will allow the proposed development to adhere to the principles of sustainable drainage practices while enhancing overall storm water quality.

4.0 FOUL DRAINAGE

4.1 Existing Foul Arrangements

Following review of DCC's drainage records indicates that there are:

- A 225mm diameter concrete combined sewer on O'Devaney Gardens, flowing west to east;
- A 300-375mm diameter concrete combined sewer on O'Devaney Gardens, flowing north to south towards Montpelier Gardens;
- A 300mm diameter concrete combined sewer which connects the end of the 225mm diameter concrete combined sewer to 300mm diameter concrete combined sewer on O'Devaney Gardens, both mentioned previously. Note that this 300mm diameter concrete combined sewer has been indicated traversing the site.
- A 225mm diameter uPVC combined sewer on Montpelier Gardens, which flows towards Infirmary Gardens;
- A 225mm diameter vitrified clay combined sewer, which flows towards Infirmary Gardens;
- A 375mm diameter concrete combined sewer on Montpelier Gardens, which flows from O'Devaney Gardens to towards Infirmary Gardens;
- A 225mm diameter foul sewer at east of Montpelier Gardens, which flows through Montpelier Park and Montpelier Drive and finally connected to a combined sewer on and Montpelier Hill.

•

Please refer to **Appendix A** for the DCC's drainage records.

4.2 Proposed Foul Drainage Arrangements

The proposed development will require a new separate drainage network to collect and convey the effluent generated by the proposed development. The drainage network for the proposed development has been designed in accordance with:

- The Regional Code of Practice Drainage Works; and
- The Greater Dublin Strategic Drainage Study; and
- Irish Water Code of Practice for Wastewater Infrastructure.

The drainage network for the development will be in accordance with Part H of the Building Regulations and to the requirements and specifications set out in the Irish Water Code of Practice for Wastewater.

4.3 Proposed Effluent Generation

The proposed development is to consist of 1047 and based on Irish Water guidelines, the foul effluent generated will be:

- \Rightarrow 446l/day per apartment (based on 2.7 persons per apartment x 150l/person/day, + a 10% increase factor).
- \Rightarrow 446 l/day/apt x 1047 units = 466,962 l/day = 466.96 m³/day;
- \Rightarrow 5.40/sec Average flow (1 DWF);
- \Rightarrow 32.42l/sec Peak Flow (6 DWF).

4.4 Proposed Foul Drainage Arrangements

The drainage network for the development will be in accordance with Part H of the Building Regulations and to the requirements and specifications of Irish Water.

All foul effluent generated from the proposed development shall be collected in separate foul pipes and flow under gravity, to the 375mm diameter concrete combined sewer on Montpelier Gardens, which flows from O'Devaney Gardens to towards Infirmary Gardens. The proposed foul drainage infrastructure has been designed using the WinDes Micro Drainage Program and a copy of the sewer design is included in **Appendix D**.

The proposed drainage infrastructure and routing plan is shown on **ODG**-**CSC-XX-DR-C-0013 & 0014** included with this submission.

4.5 Irish Water Confirmation of Feasibility

Irish Water have issued a pre-connection response. They note that investigation works are required by the applicant of the downstream network to guarantee that foul and stormwater are not interconnected. Irish Water has not indicated any restrictions with the local infrastructure network, and a such the proposed development can be accommodated.

Please refer to **Appendix E** for a copy of the confirmation of feasibility letter.

5.0 POTABLE WATER

5.1 Existing Potable Water System

Following review of DCC's watermain records indicates that there are:

- A 100mm diameter cast-iron located in O'Devaney Gardens. There are a several number of a 100mm diameter cast-iron which were located to supply the previous developments, currently demolished.
- A 100mm and 150mm diameter cast-iron on Montpelier Gardens;

Please refer to **Appendix A** for the DCC's watermain records.

5.2 Proposed Potable Water System

The proposed development is to consist of 1047 and based on Irish Water guidelines, the water demand will be:

- \Rightarrow 405 l/day per apartment (based on 2.7 persons per unit x 150l/person/day);
- \Rightarrow 405 l/day x 1047 units = 424035l/day = 424.035 m³/day;
- \Rightarrow 4.90 l/sec Average water demand;
- \Rightarrow 24.53 l/sec Peak water demand (5 times average water demand).

The proposed watermain infrastructure and routing plan is shown on **ODG**-**CSC-XX-XX-DR-C-0015** included with this submission.

5.3 Proposed Watermain Alterations

The subject lands currently have a watermain infrastructure located at north side of the O'Devaney Gardens access road from Montpeller Gardens, northwest of the subject land. Subject to agreement with Irish

Water and DCC these services shall be decommissioned as part of Phase 1. The proposed house units shall have individual water connection from a proposed 160mm diameter watermain. Please refer to **ODG-CSC-XX-XX-DR-C-0015_Proposed Watermain** for details.

5.4 Irish Water Confirmation of Feasibility

Irish Water have issued a pre-connection response. They note that local connection works will be required to facilitate the development. As per Irish Water requirements these works will be carried out by Irish Water and form part of the post planning connection agreement requirements. Irish Water has not indicated any restrictions with the local infrastructure network, and a such the proposed development can be accommodated. The required upgrades shall be agreed with Irish Water at the connection application stage of the process.

Please refer to **Appendix E** for a copy of the confirmation of feasibility letter.

6.0 SITE EXCAVATIONS AND FOUNDATION CONSTRUCTION

6.1 Background

Historic Site Uses

The historic maps available on the Ordnance Survey Ireland (OSI) online data base provide evidence of the site uses in 1837-1842 and also 1888-1913.

Extracts of the maps are provided in **Figure 3** and Figure 4 below, and indicate that the site use historically was predominantly agricultural, with no evidence of any industry which would increase the risk of historic contamination.

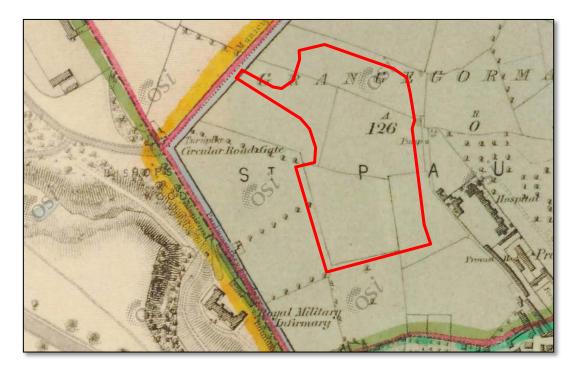


Figure 3 – Historic map (1837-1842) (source: <u>http://map.geohive.ie/mapviewer.html</u>)

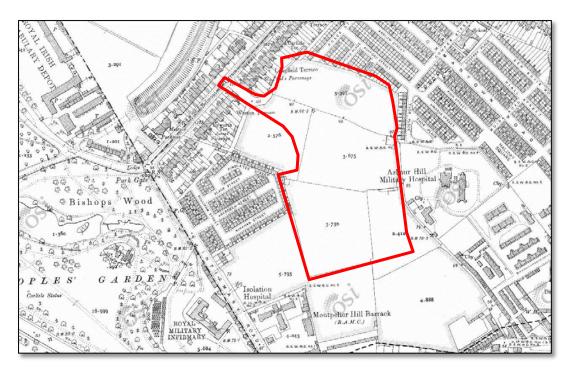


Figure 4 – Historic map (1888-1913) (source: <u>http://map.geohive.ie/mapviewer.html</u>)

Modern Development

The recent residential buildings of O'Devaney Gardens were constructed in 1954 on undeveloped lands adjacent to St Bricin's Military Hospital. The original blocks consisted of 276no. apartments within thirteen blocks of four storeys in height (see **Figure 5**).

The north-western and northern blocks were demolished between 2008 and 2010. The four southern blocks were demolished in 2012-2014.

The site currently consists of some hard standing areas and heavy vegetation.

Figure 5 – Aerial photograph of original O'Devaney Gardens (source: OSi)

6.2 Soils

A review of the Geological Survey of Irelands, 'GSI', database, (www.GSI.ie) gives

background data to the site's geology and hydrogeological properties. The site is underlain with Dark limestone and shale and forms part of the Lucan Formation. The GSI classifies the regional aquifer as locally important and moderately productive with a vulnerability classification as low.

6.3 Hydrology

The subject site is located c400m north of the River Liffey, refer to the extract below from the Environmental Protection Agency online database in **Figure**

6. The River Liffey rises at Kippure in the Wicklow Mountains, and flows approximately 100km to the Liffey Estuary.

Figure 6 – Proximity of site to River Liffey (source: <u>https://gis.epa.ie/EPAMaps/</u>)

The EPA online data base references the Latest River Q-Values upstream at the UCD Boat Club monitoring station at Island Bridge. The Q-Value score is noted at 3 and "Poor" Status. The EPA uses the Q-value system for assessing river water quality. This system describes the relationship between water quality and the macroinvertebrate community in numerical terms, with Q5 waters having high diversity of macroinvertebrate, and Q1 waters with little or none.

The subject development of the site will separate foul and storm water discharges. The foul generation will discharge to a combined public sewer, which ultimately discharges to the Ringsend Waste Water Treatment Plant.

The storm water from the site will discharge to a dedicated public storm water sewer. The storm water from the development will be managed in two phases. The first is to restrict storm water run-off from the proposed development to greenfield run-off rates via attenuation. The second aspect to be included in new applications is to incorporate sustainable urban drainage systems ('SuDs'), proposals into the scheme. The 'SuDs' concept requires that storm water quality is improved before disposal.

6.4 Hydrogeology

Hydrogeology is the study of groundwater, including its origin, occurrence, movement and quality. The hydrogeological of the Dublin Basin has been described by McConnell et al. (2001) as complex and variable and this is illustrated through the site conditions encountered in the vicinity of the site.

Aquifer Classification

The Geological Survey of Ireland has prepared Bedrock Aquifer Maps for the country based on the hydrogeological properties of the groundwater resource. The Bedrock Aquifer Map classifies the groundwater as a 'Locally Important' Aquifer which is moderately productive only in local zones (LI). The bed rock aquifer is composed of Calp Limestone where dominate groundwater flows are through the upper weathered 20m of the rock typical through fissures & fractured zones.

Above the bed rock the two layers of clay, brown underlain with black, comprise low permeability clays, the variable thickness of fill material has limited ability for localized groundwater storage.

Groundwater Levels & Flow Paths

As noted above groundwater is expected to be encountered in the limestone bedrock and the gravels layers. At present there is no ongoing

long term groundwater monitoring regime in Dublin. Regional groundwater flow in Dublin City Centre is dominated by the major surface water body the River Liffey, and the close proximity to the coast. As a result the dominate groundwater flow direction is to the south, following the ground topography. The on-site groundwater observations are noted in the Site Investigation by IGSL carried out in 2019.

Ground Parameters

On site hydraulic conductivity testing was not carried out but regional experiences the permeability of Boulder Clay would be in the region of 10-8m/s to 10-6m/s. With Bedrock limestone having typical permeability in the range of 10-6m/s to 10-5m/s.

<u>Recharge</u>

The GSI groundwater recharge map indicates a typical average recharge rate of 67mm/year.

6.5 Site Investigation

A number of site investigations have been carried out on the site in recent years. Irish Geotechnical Services Limited, hereafter IGSL Ltd, carried out geotechnical site investigations in 2004 and Ground Investigations Ireland Ltd carried out updated environmental testing in June 2018.

IGSL were commissioned by Bartra ODG Limited to carry out a detailed geotechnical and environmental site investigation over the summer of 2020. The scope of works included 11no. cable percussive boreholes, 9no. rotary boreholes, 32no. trial puts and 74no. window samples. An Environmental Site Assessment and Waste Characterization Assessment Report was carried out by O'Callaghan Moran as part of the interpretive report.

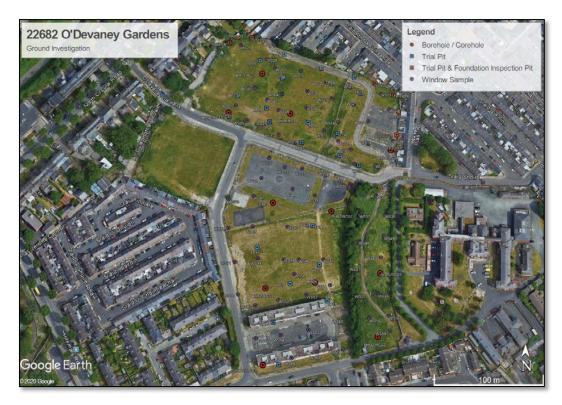


Figure 7 – Extract from IGSL Site Investigation indicating sampling locations

In summary, the general soil stratigraphy consists of the following:

- MADE GROUND (general range of 1.5m to 2.5m in depth);
- Firm / stiff brown sandy gravelly CLAY (commonly known as "Brown Boulder Clay");
- Very stiff grey / black sandy gravelly CLAY (commonly known as "Black Boulder Clay");
- LIMESTONE BEDROCK (>12m below ground level).

6.6 Proposed Development

The proposed development consists of six Multi-storey apartment blocks, with terraced housing units around the site perimeter (Refer to the BMA Planning Report for a comprehensive development description). In general, it is not proposed to form basements within the development, with

the exception of a lower split level car park in Block 7, and also some localised subfloor plant areas in Blocks 9,7 and 5.

The current site topography falls from c27.3m (OD) along the northern boundary, to c21.1m (OD) along the southern boundary. It is proposed to maintain the current vehicular access points onto Montpelier Road (to the south), the North Circular Road (to the north-west) and Swords Street (to the east). As such, the proposed site levels will not deviate considerably from the existing ground profile. This will reduce the extent of any cut and fill across the site. The construction of the buildings will generate a surplus of excavated material which will have to be disposed of offsite at a suitable licensed facility.

Due to the depth of Made Ground across the site, and the relatively low bearing capacity of the underlying Brown Boulder Clay, it is proposed to utilize bored pile foundation systems for the construction of the apartment buildings. This is an accepted form of construction for mid-rise buildings within the Dublin City region. The utilisation of pile foundations will reduce the extent of excavations, and requirement to dispose of material off-site.

The bedrock in the area was generally encountered between 12 to 15m below ground level. At the north-eastern boundary of the site the rock was not encountered up to 22m of boring. As such, it is not envisaged that any rock breaking will take place as part of the construction works.

6.7 Proposed Excavations

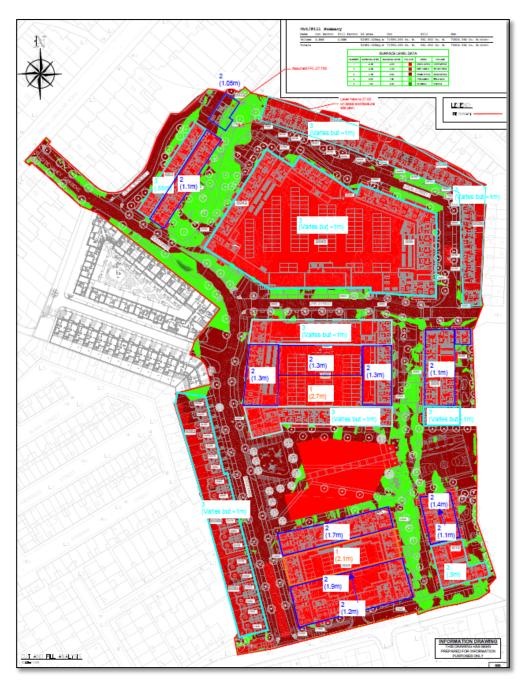
As noted, the existing road levels through the site dictate the proposed building levels. The requirements of the Technical Guidance Documents – Part M will call for level access to buildings, and the necessary ground floor buildings for insulation etc will also determine the depth of excavation to formation level for each building.

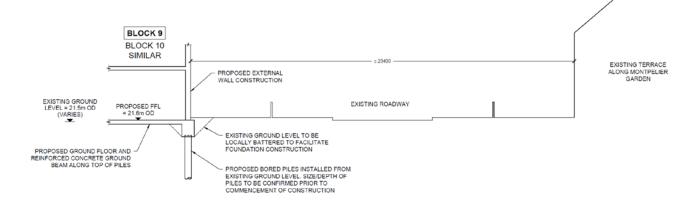
The various blocks have been assessed, and the approximate excavation to formation level is summarized in **Table 6.1** below. In general, the depth to formation is c0.75m below Finished Floor Level to allow for the floor construction.

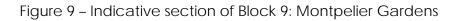
	Finished Floor Level	Average Depth to Formation	Distance to Adjoining Structures
Block 9	21.6m to 22.5m OD	1.2m to 3.5m	c23.4m
Block 10	21.5 to 22.5m OD	0.9 to 1.4m	c2.5m
Block 7	23.0 to 26m OD	<1m to 3.5m	c18.3m (29.2m at B'ment)
Block 6	24.5m OD	<1m to 1.1m	c9.7m (0.25m at Substation)
Block 4	Varies	<1m	c0.447m
Block 5	25.0m to 27.0m OD	<1m to 3.5m	c25.9m
Block 2	26.9m to 28.0m OD	0.55m to 1.1m	c8.3m
Block 3	27.2m OD	<1.0m	c1.2m (0.25m at Substation)
Housing	Varies	<1.0m	Varies. Min c1m

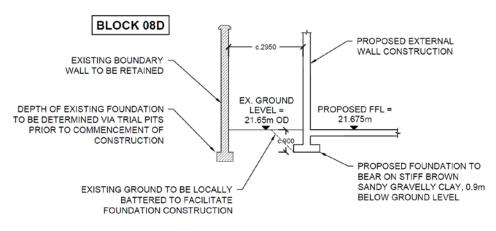
 Table 6.1 - Approximate Excavation Depths at each Block

The extent of earthworks across the site is graphically shown in the indicative plan given in **Figure 8** below.




Figure 8 – Excavation depths at each block


6.8 Set -Back of Foundations from Site Boundaries


The extracts from the drawings below indicate the dimensions from the proposed Blocks and perimeter Housing to the site boundaries. Refer also

to the Architectural Ground Floor Site Plan; dwg 19045-OMP-00_SP-DR-A-1001.

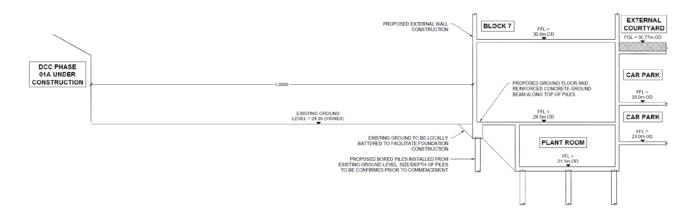


Figure 11 – Indicative section of Block 7: DCC Housing (under construction)

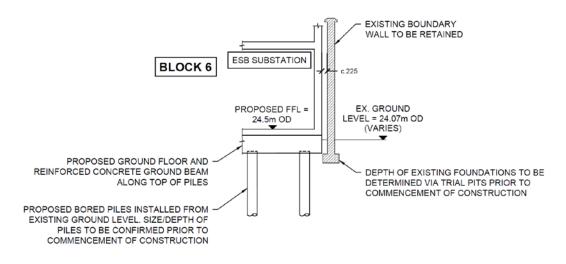


Figure 12 - Indicative section of Block 6: Boundary

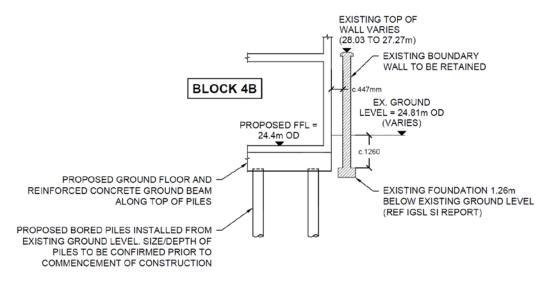


Figure 13 - Indicative section of Block 4: Boundary

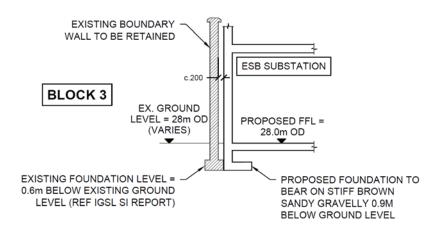


Figure 14 – Indicative section of Block 3: Boundary

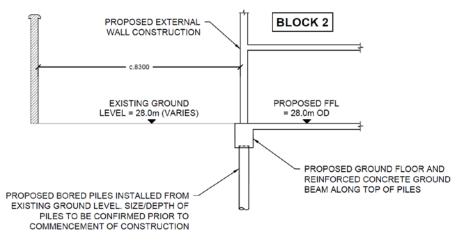


Figure 15 – Indicative section of Block 2: Boundary

6.9 Proposed Foundations

As noted, it is proposed to utilise bored piles as the foundation system for the apartment blocks. The 600-900mm diameter bored piles will be installed using a Llamada P-240TT piling rig (or similar) using a continuous flight auger. Following completion of the piles, at approximately 3-4m centres, a reinforced concrete ground beam will be constructed to allow the loads to be distributed from the super-structure to the pile foundations. See **Figure 16** and **Figure 17** below.

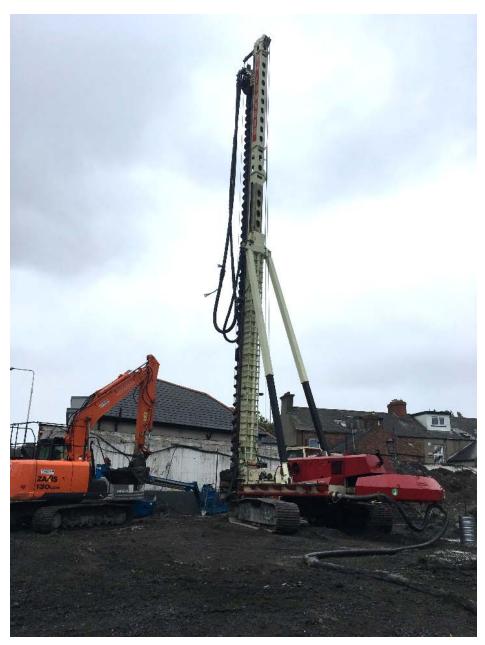


Figure 16 – Piling rig in operation

Figure 17 - Reinforced concrete ground beams cast between piles

For the perimeter housing, it is proposed to use more traditional reinforced concrete strip foundations. This system is used for domestic construction throughout the country. A standard JCB tracks machine (or similar) will excavate a 900-1200mm wide trench along the line of the load bearing walls to a suitable bearing level. Reinforced concrete strip foundations, approximately 400mm deep will be cast in advance of constructing the rising blockwork walls.

6.10 Conceptual Model

Based on the information available, a preliminary conceptual model is developed from ground information surrounding the site. The conceptual model will be revised and updated as more detailed site-specific information is to hand.

• The site currently consists areas of hardstanding and vegetation.

- From the desk top study, it can be inferred that the site is underlain by Made Ground, Brown/Black Boulder Clay and Limestone bedrock- this is verified by the site investigation works carried out in 2004, 2018 and 2020.
- Groundwater was encountered at 1.5m to 2.5m below ground level.
- Little groundwater is expected to be encountered in the Boulder Clay due to its low permeability, notwithstanding some seepage may be present.
- Regional groundwater flow in Dublin City is generally dominated by the River Liffey and the proximity of the coast. As such the flows pattern is to the south.
- The proposed excavations vary at each block, with an average excavation to formation of c1m, with a maximum excavation at Block
 7 of 3.5m. The apartment buildings will be supported on pile foundations.
- The permeability values for the boulder clay in the region range between 10-8m/s to 10-6m/s. The presence of low permeability Boulder Clay beneath the Made Ground / Gravels ensures that the groundwater in the overburden and in the bedrock are hydraulically separated from each other.
- The GSI database of neighbouring sites indicates the bedrock level at >12m below ground level. As noted, the proposed buildings will be supported on pile foundations.

6.11 Summary Review of DCC Basement Policy Requirements

We confirm that we have reviewed the DCC Basement Development Policy Document and Guidance Document.

The proposed development does not incorporate full basement elements, with the exception of a lower split-level carpark at Block 7, and also some localised subfloor plant areas in Blocks 9,7 and 5. In order to carry out a thorough and comprehensive assessment, we have assessed the lower Plant Room area of Block 7 which will result in an excavation of c3.5m.

We note at Section 1.1 that "DCC wish to acknowledge that the basement Policy and Guidance, contained herein, was developed with reference to existing policies and guidance documents already adopted by the London Borough of Camden" in the UK.

It is therefore acknowledged that the document is based on a totally different soil type than that which is typical of Dublin which consists of gravels, brown and black boulder clays overlying rock. We note also that at Section 1.2 disclaimer that "Owners, users and developers are advised to take all reasonable measures to assess potential issues (as outlined in this Policy document with reference also to the related guidance document) which may impact upon lands and buildings (including basements) in which they have an interest prior to making planning development decisions".

6.12 Category of Basement

With reference to Section 7.2 of the DCC Basement Development Guidance Document the category of Basement for this development is <u>Category A</u>.

Summary of DCC Basement Development Policy Document

This section outlines the objectives and responses to the DCC Basement Policy document;

• Protects and enhances where possible the groundwater quality, quantity and classification (groundwater environment).

The Lower Ground Floor and localised basement of Block 7 are set back c29.2m from the site boundary. Any dewatering required during the works is carried out by filtering the water prior to discharge under licence from DCC. Therefore, the groundwater is protected from contamination and the groundwater is enhanced by the removal of the contaminated soil which the groundwater was exposed to. Therefore, the proposed basement meets the requirement.

• Provides evidence that the construction of basements shall not place the groundwater at undue risk.

The Lower Ground Floor and localised basement of Block 7 are set back c29.2m from the site boundary. The set-back, the relatively shallow nature of the excavation, and the absence of deep basements in the area will have a negligible impact on groundwater flow through the site.

 Provides evidence that the structural stability of adjoining or neighbouring buildings are not put at risk. The Developer should also identify the risk to land stability of the site and adjacent areas and provides appropriate mitigation, as required.

The proposed Lower Ground Floor and basement of Block 7, and the foundation construction of the perimeter housing are set back a considerable distance from the property boundary. In our opinion, the excavated sloped will be outside the zone of influence of neighbouring buildings. Monitoring wells shall be

provided to ensure that it is confirmed that there is no draw down of groundwater outside the site. As part of the monitoring works also, condition surveys of neighbouring buildings shall be carried out prior to commencement of the works and shall be monitored during the works.

 Provides an in-depth management plan for any demolition works and for the construction of a basement. The Developer is required to adhere to this plan ("Construction Management Plan") if the application is deemed successful.

A full in-depth Construction Management Plan shall be submitted for agreement with DCC prior to commencement of the works to ensure all issues are covered during construction. An Outline Construction Management Plan is submitted with the planning application.

 Is in accordance with the proper development of the area with a high quality design.

We confirm that the design is of high quality and in accordance with the proper development of the area.

 Does not cause harm or undue nuisance to neighbourhoods and adjoining buildings where development is to occur, during and after construction.

Once the Lower Ground Floor and basement of Block 7 are complete, a reinforced watertight concrete basement walls and floors shall be constructed. Therefore, the development both during construction and after construction shall not cause harm or undue nuisance to neighbourhoods. The use of strict noise, vibration and dust monitoring during construction shall be implemented throughout the construction.

• Ensures adequate consideration is given to traffic planning during construction and thereafter.

Traffic planning during construction shall be included in detail in the Construction Management Plan to be agreed with DCC prior to commencement of construction. Traffic Management is also set out in the Outline Construction Management Plan submitted with the planning application.

 Does not have an adverse effect on existing patterns of surface water drainage, including infiltration into groundwater and is consistent with DCC's Policy on Sustainable Urban Drainage Systems ('SUDS').

The large extents of the site are currently unattenuated. It is proposed to attenuate the site in accordance with the Development Plan and also include 'SUDS' measures. Therefore, there is no increase in surface water being generated with the proposed development. A full Engineering Services Report has been provided indicating that the surface water drainage is designed to DCC's Policy on sustainable urban drainage systems.

• Does not increase groundwater infiltration into existing sewers and drains beyond permitted restrictions.

Surface water drainage in the area is under ground water levels and the proposed development shall not affect the infiltration into existing systems.

 Shall not significantly impact on groundwater or surface water flows to the extent that this is likely to increase the risk of flooding. This flood risk is to be evaluated, in accordance with the OPW 2009 Guidelines, during and post construction with appropriate mitigation provided.

A full Site Specific Flood Risk Assessment report has been carried out and submitted with this Planning Application as part of the Engineering Services Report. The proposed development does not increase the risk of flooding. This risk has been evaluated for both during and post construction.

 Does not include basement development for residential use, below the estimated flood levels in flood zone areas Zone A or Zone B (see DCC Development Plan for Zone locations).

A full Site Specific Flood Risk Assessment report has been carried out and submitted with this Planning Application as part of the Engineering Services Report.

 Accounts for the impact of the future planting and mature development of trees on site. A thickness of at least 1m of soil on the "roof" of a basement is required to mitigate against and minimise surface water run-off, with various 'SUDS' measures incorporated.

This is not applicable to this project. Notwithstanding, a full landscape plan is provided to meet the requirements of the Development Plan and the drainage has been designed to DCC's 'SuDs' requirements.

• Ensures that all basement developments shall account for and accommodate the existing groundwater contained within and flowing through their site. As a minimum standard there is to be at least 0.5m wide of clear space provided between the site/property boundary and the outer extent of a basement. This 0.5m wide space and shall extend over the full height and around the perimeter of the basement and shall be filled with suitable, highly permeable material (with appropriate wrapping).

The Lower Ground Floor and localised basement of Block 7 are set back c29.2m from the site boundary.

 Accounts for the characteristic of the site. In the case of a domestic basement development to the rear of a property (garden) generally should not exceed the footprint of the original building and be no deeper than one full storey below ground level. Domestic basement development should generally not extend to more than 50% of the amenity/garden space.

The Lower Ground Floor and localised basement of Block 7 are set back c29.2m from the site boundary. The excavations for the perimeter housing proposed will involve traditional shallow foundations.

 Provide appropriate evidence for larger schemes, including those consisting of more than one storey in depth or extending beyond the footprint of the above ground building, to demonstrate to the Planning Authority's satisfaction that the development does not harm the built and natural environment or local amenity.

Not applicable to this scheme.

 Takes account of the content of the "Dublin City Development Plan 2016 – 2022" for construction and development related matters. This policy is to be read in conjunction with this document and all other current DCC policies.

As per the planning submission the development takes full account of the Dublin City Development Plan 2016 to 2022.

• Conserves and where possible enhances the biodiversity value of the site.

The proposed development will provide enhanced landscaping to the local area.

 Ensures appropriate handling and dealing with waste removal, including contaminated/hazardous ground arising during construction – details to be included in the "Construction Management Plan".

As per the submitted documents all local contaminated ground shall be dealt with in accordance with statutory legislation and shall be shipped to appropriately licensed landfills.

 Ensures that the impact of the proposed construction methodologies and temporary works and ground anchors are fully assessed, and any necessary mitigation measures put in place.

The proposed Lower Ground Floor and basement of Block 7 will not require any temporary works which will extend beyond the site boundary.

• Does not impact negatively on the surrounding areas, both private and public.

The proposed development as noted above does not impact negatively on the surrounding areas both private and public.

7.0 RESPONSE TO PLANNING BOARD'S OPINION

Following the stage two part of the SHD application process, the Board issued its opinion on the scheme. The opinion included an appendix from DCCs Drainage Division. Their commentary is noted below with CS Consultants response to same.

"DCC Drainage Division recommends seeking clarification on the proposed surface water and flood risk management strategy proposed for this development. The drainage proposal shall be developed further to address the requirements of the current DCC Development plan."

In particular, the following shall be addressed -

• The development shall incorporate natural water retention measures in the management of surface water, with a minimum requirement of a 3stage treatment approach, providing an integrated approach with the landscaping proposals. Soft landscaping should be considered before hard landscaping for surface water drainage and storage management.

Response

This has been noted, refer to CS drawing **ODG-CSC-XX-XX-DR-C-0046** for a sustainable urban drainage drawing giving a clear break down of the areas in use providing the three stage treatment required by the Council.

• Surface water storage and design calculations shall be submitted taking into account for 20% Climate Change as per the "Dublin City Development Plan 2016-2022 Strategic Flood Risk Assessment".

Response

Noted refer to section 3.3 for the storm water calculations indicating that 20% climate change factor has been used.

• The proposal for the management of surface water as indicated on the drawings submitted is not acceptable. The developer shall submit a detailed site plan including location, size, and treatment train of proposed natural water retention measures.

Response

This has been noted, refer to CS drawing **ODG-CSC-XX-XX-DR-C-0046** for a sustainable urban drainage drawing giving a clear break down of the areas in use providing 'SuDs' measures.

• Detail of design analysis/strategy to locate attenuation storage to serve the entire development in the proposed public park.

Response

The proposed scheme has to re-locate the existing attenuation tank from the housing development currently under construction. This volume of storm water has to be included within the provision for the total stormwater attenuation area for the scheme. While sustainable urban drainage systems will be used to cater for the 'first flush', (0 – 15mm) of rainfall the development must also provide a storage capacity for the 1-in-100 year extreme storm, increased by a factor of 20% for the predicated impacts of climate change. This volume of water, from the subject lands and from the housing estate currently under construction is too large to realistically be stored in an on-site detention pond or basin. The size required would greatly inhibit open space and recreational land use. For this and health and safety reasons it is proposed to store the volumes of storm water generated by the extreme storm events in an underground tank. This will allow for the required

volumes of storage to be stored underground while above the land can be used for alternative purposes.

• Details of the proposed maintenance management strategy for the proposed attenuation storage shall be provided.

Response

It is proposed to use a modular industry specific storage system to retain the storm water generated on site. See **Appendix F** for details from the propose supplier giving maintenance details for the system.

• Details of interim solution for managing surface water run-off from existing residential development during construction of proposed new attenuation storage surface water sewers to facilitate the proposed diversions. This shall be addressed in the Site Specific Flood Risk Assessment.

Response

The proposal is to construct a suitably sized attenuation storage area at the location for the permanent storm water attenuation tank. Then to divert the storm water from the existing housing scheme into this storage area. the storage area will be sized to ensure that storm water generate on site during an extreme rainfall event will be retained in a suitable location and drained via a restricted discharge rate. This will ensure that there is no chance of on site overland flooding during the reconstruction period from storm water generated on the existing housing estate site.

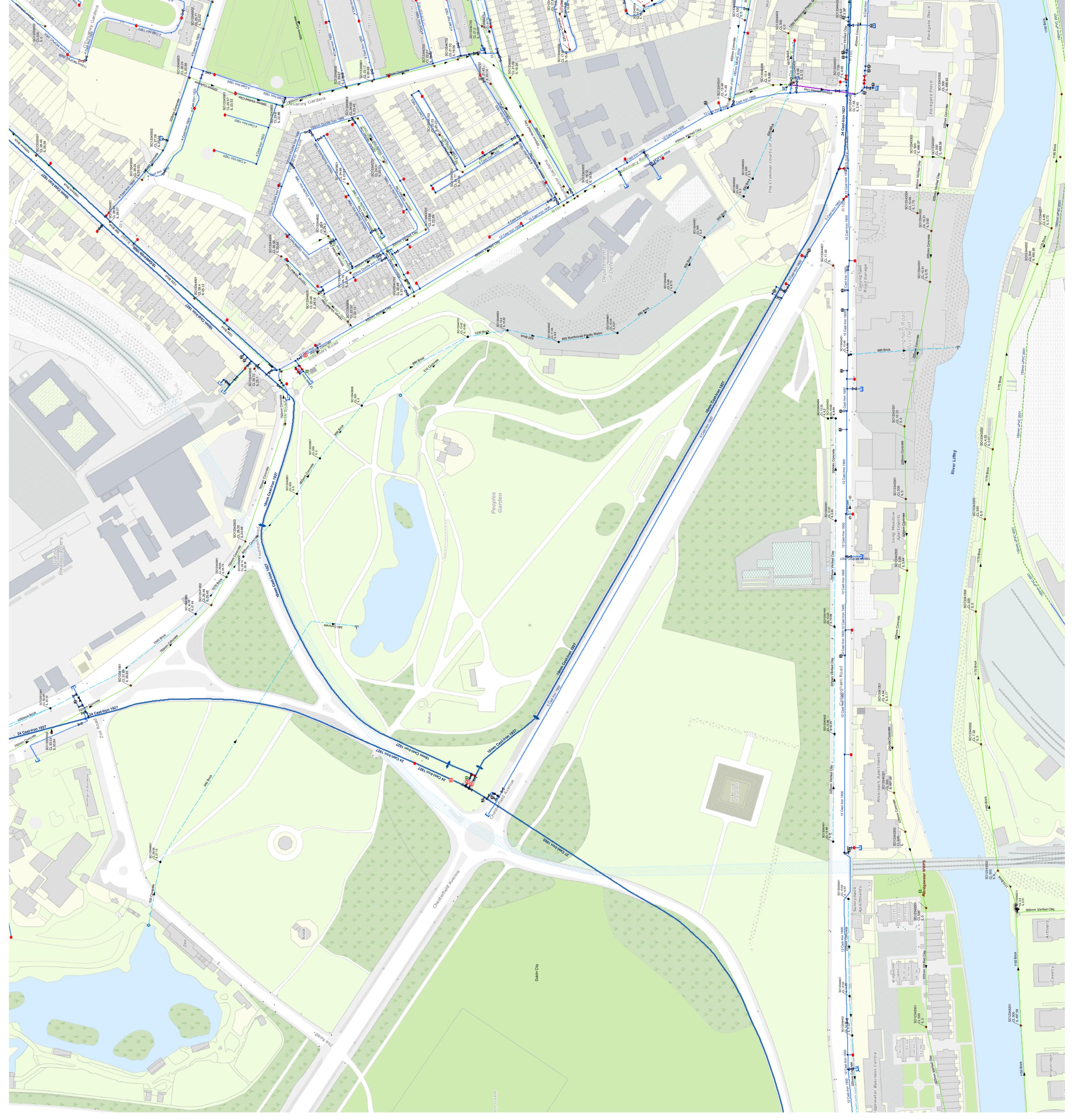
• A longitudinal/cross section of the proposed surface sewer connection to Montpelier Gardens shall be provided indicating the size and depth of proposed sewer and adjacent utilities to ensure a route has been established.

Response

Noted refer to drawing ODG-CSC-XX-XX-DR-C-0014 for details of same.

• The location of the proposed petrol interceptor is not acceptable. Proposed location to be revised in accordance with the Greater Dublin Regional Code of Practice for Drainage Works.

Response


Noted refer to drawing **ODG-CSC-XX-XX-DR-C-0013** for details of same.

Appendix A:

DCC's Records

Sol3356001 5013357003 5013357003 5013357003 5013357003 5013357003 5013357003 5013357003 501325001 50150 50120 5000 50120 5000 50120 50120 5000 500	
L 25.62 L 12.62 L 25.62 L 25.6	
	Legend Legend
Cost. Non 1920 Cost. Non 1920	dary Meter
	Check Meter
1920 ¢ Cast-Ilon 1920	 Unknown Meter ; Other Meter Sluice Valve Open
¢ Cast-Iron	Sluice Valve Closed
SO13346901 SO13346901 CL 25.45 /IL 23.17	Sluice Valve Open
225mm Concrete SO13347905 Col 24.3 CL 24.74 CL 24.74 L 22.19	Sluice Valve Closed
oucrete	Double Air Control Valve
SO13347801	Water Hydrants Hydrant Function
CL 24.25 LL 21.9	Fire Hydrant
	Telemetry Kiosk
	Cap
	• Other Fittings Water Distribution Maine
0756 L ION-	Owned By
,,	Irish Water
	Private
	Irish Water
Contraction of the second seco	Water Aba
A Cast How Sol 334 7103 50 134 7103 70 134 7103 70 134 7103 70 134 7103 70 134 7103 70 134 7103 70 134 7100 70 134 7100 700 700 700 700 700 700 700 700 70	Sewer Mannoles Manhole Type
6 Cast-Iron 1900 225mm Vitritied Clay	• Standard
CL 21:13 CL 21:13 LL 18.22 SO13347705 SO13347705 SO13347705 SO13347705 SO13347705 SO13347705 SO13347705 SO13347706 SO1347706 SO134	• Other; Unknown
L 15.30 S 01334705 B 019.75 C 015.8 C 11.15.8 C 11.15.8	Sewer Discharge Points
Szenin Cond	Other; Unknown
300mm 13346605 113346605 113346605 113346605 1137.22 113346605	Pump Station
17.82 5.2 336504 225mm Concrete S013347604 225mm Concrete S013347604 225mm Concrete S013347604 23650 1965 86 11 11 12 28 11 11 12 12 12 12 12 12 12 12 12 12 12 1	Sewer Inlets
SO133466 2 C1 1.00 0L 16.56 SO133466 2 C1 1.00 0L 16.56 SO13346603 C1 16.56 SO13346603 C1 16.56 SO13346603 C1 16.18	Inlet Type
L 14.56 L 16.56 L 14.58	Gravity - Combined
	Gravity - Foul
	Gravity - Overflow
SO13346503 CL 16.14 LL 13.94 CL 15.94 CL 15.94 CL 15.94 LL 13.94	Storm Manholes
Soi 3745502 - Formi Concrete / L 13.7 CL 16:16 - D1 We - D1 We - Soi 3347505 L 14.59 - Soi 3347505 - Soi 347505 - Soi 347	Manhole Type
	• Standard
	Other; Unkno
	Discharge Type
300mm Vitrified Clav 300mm Vit	Outfall
Montpeller Mews	
260 260 314 38 40 42	Storm Inlets
	Standard
S013346411 L 2.08 LL 2.08	Surface Fittings
3402 12 3412 10 300mm Vitringd Clay 7 300mm Vitringd Vitr	Fitting Type Other; Unknown
Parkgate & & & outline Vitring Clay ILL 2.29	
⁴⁵⁰ nm Cast Iron Cast Iron Solition Cast Iron Solition Cast Iron Solition Cast Iron Solition Cast Iron Solition Cast Iron	1:1,000 at A0 Last edited:
3016 100	
	Σ
	25 50 100
	system of any nature without the written permission of Irish Water as copyright holder except as agreed for use on the project for which the document was originally issued.
	as to hat i er. arran
SO13347213 900mm Brick	concenting the accuracy, completeness of up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other
CL 5.51 IL 0.56 IL 0.56 IL 0.56	excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.
150mm uPVC 2000	© Copyright Irish Water Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. License No. 3-3-34

Appendix B:

Met Eireann Data and Attenuation Calculation

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 313628, Northing: 234888,

	Interval	rval						Years								
DURATION	6months, lyear	lyear,	2,	З,	4,	5,		20,	30,	50,	75,	100,	150,	200,		500,
5 mins	2.4,	3.5,	4.1,	5.0,	5.6,			9.5,		12.4,	14.0,	15.2,	17.1,	18.6,		N/A ,
10 mins	3.4,	4.9,	5.7,	7.0,	7.8,			13.2,		17.3,	19.5,	21.2,	23.8,	25.9,		N/A ,
15 mins	4.0,	5.8,	6.7,	8.2,	9.2,			15.6,		20.4,	22.9,	24.9,	28.0,	30.4,		N/A ,
30 mins	5.3,	7.5,	8.7,	10.6,	11.8,			19.6,		25.4,	28.4,	30.8,	34.5,	37.3,		N/A ,
1 hours	7.0,	9.8,	11.3,	13.6,	15.1,			24.6,		31.6,	35.3,	38.1,	42.4,	45.8,		N/A ,
2 hours	9.2,	12.8,	14.7,	17.5,	19.4,			31.0,		39.4,	43.7,	47.1,	52.3,	56.2,		N/A ,
3 hours	10.9,		17.1,	20.3,	22.4,			35.4,		44.8,	49.6,	53.3,	59.0,	63.4,		N/A ,
4 hours	12.2,		19.0,	22.5,	24.9,			39.0,		49.1,	54.3,	58.2,	64.3,	69.0,		N/A ,
6 hours	14.3,		22.2,	26.1,	28.8,			44.6,		55.8,	61.5,	65.9,	72.6,	77.8,		N/A ,
9 hours	16.9,	22.7,	25.8,	30.3,	33.3,		42.9,	51.0,		63.4,	69.8,	74.6,	82.0,	87.7,	92.4,	N/A ,
12 hours	19.0,		28.7,	33.6,	36.9,			56.0,		69.5,	76.3,	81.5,	89.4,	95.5,		N/A ,
18 hours	22.3,		33.5,	39.0,	42.6,			64.1,		79.0,	86.5,	92.3,	101.0,	107.7,		N/A ,
24 hours	25.1,		37.3,	43.3,	47.3,			70.5,		86.5,	94.6,	100.8,	110.1,	117.2,		143.0,
2 days	30.8,	39.9,	44.5,	51.2,	55.6,			80.6,		97.5,	105.9,	112.3,	122.0,	129.3,		155.6,
3 days	35.4,	45.4,	50.4,	57.6,	62.3,			88.8,		106.6,	115.4,	122.1,	132.1,	139.6,		166.7,
4 days	39.5,		55.5,	63.2,	68.1,			96.1,		114.6,	123.7,	130.6,	141.0,	148.8,		176.5,
6 days	46.5,	58.5,	64.4,	72.8,	78.3,		.1,	108.6,		128.4,	138.2,	145.5,	156.5,	164.7,		193.9,
8 days	52.8,		72.2,	81.3,	87.1,		.1,	119.5,		140.5,	150.8,	158.5,	170.0,	178.6,		209.0,
10 days	58.4,	72.4,	79.3,	89.0,	95.2,			129.3,		151.4,	162.1,	170.2,	182.1,	191.1,		222.7,
12 days	63.8,	78.6,	85.8,	96.1,	102.6,		.6,	138.4,		161.4,	172.6,	181.0,	193.4,	202.7,		235.3,
16 days	73.6,	90.0,	97.9,	109.1,	116.3,			155.1,		179.7,	191.7,	200.6,	213.8,	223.7,		258.2,
20 days	82.7,	100.4,	109.0,	121.1,	128.7,		, o .	170.2,		196.3,	209.0,	218.4,	232.3,	242.7,		278.8,
25 days	93.2,	112.6,	121.9,	134.9,	143.2,		168.1,	187.5,		215.4,	228.8,	238.8,	253.5,	264.4,		302.5,
NOTES:																
N/A Data not available	not availa	ble														
	000 000	mond from	4+000 0 m	- + corric	Cord Cord	T/		[(

These values are derived from a Depth Duration Frequency (DDF) Model For details refer to: 'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

Annual Average Rainfall(mm)

743	729	714	713	718	727	740	752
229000	230000	231000	232000	233000	234000	235000	236000
313000	313000	313000	313000	313000	313000	313000	313000

313000 237000 765

Project: Project No.: Calculation: Calcs By: Checked By: Date:	B089 Attenuation 100-year DD RFM 3/12/18			CS CONSULTING GROUP DUBLIN - LONDON - LIMERICK
Site Location:		O'Devaney Gardens		
Design Storm Ref	turn Period:	100 years		
Climate Change F	actor:	20 %		
Soil Type:		4		
Total Site Area:		5.80 ha		
Hardstand Area:		5.40 ha	@	100% Impervious
Softstand Area:		0.40 ha	@	20% Impervious
Effective Imperme	eable Area:	5.48 ha		
Allowable Outflo	w	Calculate		
IH124: QBAR = 0	.00108 x AREA ^{0.89} x SAAR ^{1.17}	x SOIL ^{2.17}		
AREA:		0.0580 km ²		
SAAR:		732 mm		
SOIL:		0.47		
QBAR/ha		5.09 l/s/ha		
Allowable Outflo	w	29.0 l/s	Smallest Allowable	Discharge Rate

Storage required =

4042 m³

Duration	Rainfall 100-Year	Rainfall 100-Year with CCF	Intensity	Discharge (Q = 2.78iA)	Proposed Runoff	Contiguous Land Runoff	Total Runoff	Allowable Outflow	Storage Required
(min)	(mm)	(mm)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)
5	15.2	18.2	218.9	3251	975	0	975	9	966
10	21.2	25.4	152.6	2267	1360	0	1360	17	1343
15	24.9	29.9	119.5	1775	1597	0	1597	26	1571
30	30.8	37.0	73.9	1098	1976	0	1976	52	1924
60	38.1	45.7	45.7	679	2444	0	2444	104	2340
120	47.1	56.5	28.3	420	3022	0	3022	209	2813
180	53.3	64.0	21.3	317	3419	0	3419	313	3106
240	58.2	69.8	17.5	259	3734	0	3734	418	3316
360	65.9	79.1	13.2	196	4228	0	4228	626	3601
540	74.6	89.5	9.9	148	4786	0	4786	940	3846
720	81.5	97.8	8.2	121	5229	0	5229	1253	3976
1080	92.3	110.8	6.2	91	5922	0	5922	1879	4042
1440	100.8	121.0	5.0	75	6467	0	6467	2506	3961
2880	112.3	134.8	2.8	42	7205	0	7205	5011	2193
4320	122.0	146.4	2.0	30	7827	0	7827	7517	310
5760	130.6	156.7	1.6	24	8379	0	8379	10022	-1644
8640	145.5	174.6	1.2	18.0066	9335	0	9335	15034	-5699
11520	158.4	190.1	1.0	15	10162	0	10162	20045	-9883
14400	170.1	204.1	0.9	13	10913	0	10913	25056	-14143
17280	180.9	217.1	0.8	11	11606	0	11606	30067	-18461
23040	200.5	240.6	0.6	9	12863	0	12863	40090	-27226
28800	218.3	262.0	0.5	8	14005	0	14005	50112	-36107
36000	238.6	286.3	0.5	7	15307	0	15307	62640	-47333

Appendix C:

Stormwater WinDes Design

CS Consulting En	gineers	S							Page	1			
45 Beech Street				no.	B089			[1
Centralpoint			ODG							′ <u> </u>		20	\sim
London, EC2Y 8A	D			rm De									
Date May 2021			Des	igned	l by RE	PM) D)	EL	50F	201
File B089-Storm_	RevA.MI	DX	Che	cked	by						<u> </u>		
Innovyze			Net	work	W.12.6	5							
	ST	ORM SE	WER D	ESIGN	by th	ne Modif	ied Ra	tion	al M	letho	d		
			Ľ	Desigr	n Crite	eria foi	r Storr	m					
		P	ipe Si	zes SI	ANDARD	Manhole	Sizes S	TANDA	RD				
Мах	Return : imum Ra Foul So umetric	Period M5-0 I infall ewage (1 Runoff	(years) 60 (mm) Ratio F (mm/hr) l/s/ha)	17.0 0.3 0. 0.7 1	2 00 50 Min 00 M 50 00	Mir	Flow / C nimum Ba kimum Ba epth for or Auto oe for C	Climat ackdro ackdro r Opti Desig	ce Ch op He op He Imisa gn on	ight ight tion ly (m	(m) 0.0 (m) 0.0 (m) 0.0 /s) 1.	000	
			Ti	-		agram fo		rm					
			Time			e Area							
			(mins)) (ha)	(mins	s) (ha)	(mins)	(ha)					
			0-4	4 1.23	0 4-	-8 3.164	8-12	0.101	-				
					I				-				
					I	-8 3.164			-				
			Tota	l Area	a Contri		ha) = 4	.495	-				
			Tota To	l Area Dtal Pi	a Contri .pe Volu	ibuting (ha) = 4 = 167.2	.495 39	-				
	PN	Length	Tota To <u>Net</u> y	ul Area otal Pi work	Design	ibuting (ume (m ³) = n Table T.E.	ha) = 4 = 167.2 for St Base	.495 39 20rm	k	HYD	DIA		
	PN	Length (m)	Tota To <u>Net</u> Fall	ul Area otal Pi work	Contri pe Volu Design I.Area	ibuting (ume (m ³) n Table T.E.	ha) = 4 = 167.2 for St Base	.495 39 20rm	k	HYD SECT			
		(m)	Tota To <u>Netr</u> Fall (m)	ul Area otal Pi work Slope (1:X)	Design I.Area (ha)	ibuting (ume (m ³) = n Table T.E. (mins) 1	ha) = 4 = 167.2 for St Base Flow (1/	.495 39 .orm /s) (k (mm)	SECT	(mm)		
	1.000	-	Tota To <u>Netr</u> Fall (m) 0.148	N Area Notal Pi Work Slope (1:X) 199.6	Design I.Area (ha)	ibuting (ume (m ³) = <u>n Table</u> T.E. (mins) J 4.00	ha) = 4 = 167.2 for St Base Flow (1/	.495 39 20rm	k (mm)	SECT O			
	1.000 1.001	(m) 29.544 17.748	Tota To <u>Net</u> Fall (m) 0.148 0.089	ul Area otal Pi work Slope (1:X) 199.6 200.0	Design I.Area (ha) 0.036 0.068	ibuting (ume (m ³) = <u>n Table</u> T.E. (mins) I 4.00 0.00	ha) = 4 = 167.2 for St Base Flow (1/	.495 39 .corm /s) (0.0 0 0.0 0	k mm) . 600 . 600	SECT 0 0	(mm) 225 225		
	1.000 1.001 2.000	(m) 29.544 17.748 19.626	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098	<pre>Il Area Utal Pi work Slope (1:x) 199.6 200.0 200.3</pre>	Contri pe Volu Design I.Area (ha) 0.036 0.068 0.072	ibuting (ume (m ³) = <u>n Table</u> T.E. (mins) I 4.00 0.00 4.00	ha) = 4 = 167.2 for St Base Flow (1/	.495 39 .corm /s) (0.0 0 0.0 0	k mm) . 600 . 600	SECT 0 0 0 0	(mm) 225 225 225		
	1.000 1.001 2.000 2.001	(m) 29.544 17.748	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118	<pre>Il Area Utal Pi work Slope (1:x) 199.6 200.0 200.3 200.0</pre>	Contri pe Volu Design I.Area (ha) 0.036 0.068 0.072 0.052	ibuting (ume (m ³) = <u>T.E.</u> (mins) I 4.00 0.00 4.00 0.00	ha) = 4 = 167.2 for St Base Flow (1/ (((.495 39 .corm /s) (0.0 0 0.0 0	k mm) . 600 . 600 . 600 . 600	SECT 0 0 0 0 0 0	(mm) 225 225		
	1.000 1.001 2.000 2.001 2.002	(m) 29.544 17.748 19.626 23.531 28.881	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144	<pre>Il Area btal Pi work Slope (1:x) 199.6 200.0 200.3 200.0 200.0</pre>	Contri pe Volu Design I.Area (ha) 0.036 0.068 0.072 0.052 0.056	ibuting (ume (m ³) = T.E. (mins) I 4.00 0.00 4.00 0.00 0.00	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((.495 39 .corm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) . 600 . 600 . 600 . 600 . 600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 225 225		
	1.000 1.001 2.000 2.001 2.002	(m) 29.544 17.748 19.626 23.531	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144	<pre>Il Area btal Pi work Slope (1:x) 199.6 200.0 200.3 200.0 200.0</pre>	Contri pe Volu Design I.Area (ha) 0.036 0.068 0.072 0.052 0.056	ibuting (ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 0.00	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((.495 39 .corm /s) (0.0 0 0.0 0 0.0 0	k mm) . 600 . 600 . 600 . 600 . 600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 225		
	1.000 1.001 2.000 2.001 2.002 1.002	(m) 29.544 17.748 19.626 23.531 28.881	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144 0.187	<pre>Il Area btal Pi work Slope (1:x) 199.6 200.0 200.3 200.0 200.0</pre>	Contri pe Volu Design I.Area (ha) 0.036 0.068 0.072 0.052 0.056 0.139	ibuting (ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 0.00 0.00	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((.495 39 .corm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) . 600 . 600 . 600 . 600 . 600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 225 225		
	1.000 1.001 2.000 2.001 2.002 1.002	(m) 29.544 17.748 19.626 23.531 28.881 37.381	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144 0.187	Work Slope (1:X) 199.6 200.0 200.3 200.0 200.0 200.0 200.1	Contri pe Volu Design I.Area (ha) 0.036 0.068 0.072 0.052 0.056 0.139 0.452	ibuting (ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 0.00 0.00 4.00 0.00 0.00	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((((((((((.495 39 .corm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) . 600 . 600 . 600 . 600 . 600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 225 225 300		
	1.000 1.001 2.000 2.001 2.002 1.002	(m) 29.544 17.748 19.626 23.531 28.881 37.381	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144 0.187	Work Slope (1:X) 199.6 200.0 200.3 200.0 200.0 200.0 200.1	Contri pe Volu Design I.Area (ha) 0.036 0.068 0.072 0.052 0.056 0.139 0.452	ibuting (ume (m ³) = T.E. (mins) I 4.00 0.00 4.00 0.00 0.00 0.00	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((((((((((.495 39 .corm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) . 600 . 600 . 600 . 600 . 600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 225 225 300		
PN	1.000 1.001 2.000 2.001 2.002 1.002	(m) 29.544 17.748 19.626 23.531 28.881 37.381 88.854 T.C.	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.148 0.118 0.144 0.187 0.444	work Slope (1:X) 199.6 200.0 200.0 200.0 200.0 200.0 200.1 <u>Netv</u> Σ Ι.	A Contri pe Volu Design I.Area (ha) 0.036 0.036 0.036 0.052 0.052 0.056 0.139 0.452 Work Re Area	ibuting (ume (m ³) = T.E. (mins) I 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 0.00 4.00 0	ha) = 4 = 167.2 Base Flow (1) ((((((((((((((((((.495 39 .orm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) . 600 . 600 . 600 . 600 . 600 . 600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 300 300	Flow (1/s)	
1.000	1.000 1.001 2.000 2.001 2.002 1.002 3.000 Rain (mm/hr) 50.00	<pre>(m) 29.544 17.748 19.626 23.531 28.881 37.381 88.854 t.C. (mins) 4.53</pre>	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144 0.187 0.444 US/II (m) 26.00	Al Area work Slope (1:x) 199.6 200.0 200.0 200.0 200.0 200.0 200.1 Netw • Σ Ι. (h 0 0	A Contri pe Volu Design I.Area (ha) 0.036 0.036 0.072 0.052 0.056 0.139 0.452 vork Rea Area a) FI 0.036	ibuting (ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 2. Base Low (1/s) 0.0	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((((((((((.495 39 .orm /s) (0.0 0 0.0 0	k mm) .600 .600 .600 .600 .600 .600 .600	SECT 0 0 0 0 0 0 Vel (m/s) 0.92	(mm) 225 225 225 300 300 300 Cap (1/s) 36.7	(1/s) 4.8	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 Rain (mm/hr)	<pre>(m) 29.544 17.748 19.626 23.531 28.881 37.381 88.854 t.C. (mins) 4.53</pre>	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.118 0.144 0.187 0.444 US/II (m)	Al Area work Slope (1:x) 199.6 200.0 200.0 200.0 200.0 200.0 200.1 Netw • Σ Ι. (h 0 0	A Contri pe Volu Design I.Area (ha) 0.036 0.036 0.036 0.052 0.052 0.056 0.139 0.452 Vork Rea Area Area Area	ibuting (2 ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 E Base Low (1/s)	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((((((((((.495 39 .orm /s) (0.0 0 0.0 0	k mm) .600 .600 .600 .600 .600 .600 .600	SECT 0 0 0 0 0 0 Vel (m/s) 0.92	(mm) 225 225 225 225 300 300 Cap (1/s)	(1/s) 4.8	
1.000 1.001	1.000 1.001 2.000 2.001 2.002 1.002 3.000 Rain (mm/hr) 50.00 50.00	<pre>(m) 29.544 17.748 19.626 23.531 28.881 37.381 88.854 T.C. (mins) 4.53 4.86</pre>	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144 0.187 0.444 US/II (m) 26.000 25.85	all Area btal Pi work Slope (1:X) 199.6 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.1 Netw • Σ Ι. (h 0 0 2 0	A Contri pe Volu Design I.Area (ha) 0.036 0.072 0.052 0.056 0.139 0.452 Vork Rea Area Area A. FI 0.036 0.103	ibuting (2 ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((((((((((.495 39 .orm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) .600 .600 .600 .600 .600 .600 .600 .60	SECT 0 0 0 0 0 Vel (m/s) 0.92 0.92	(mm) 225 225 225 225 300 300 300 Cap (1/s) 36.7 36.7	(1/s) 4.8 14.0	
1.000	1.000 1.001 2.000 2.001 2.002 1.002 3.000 Rain (mm/hr) 50.00	<pre>(m) 29.544 17.748 19.626 23.531 28.881 37.381 88.854 T.C. (mins) 4.53 4.86 4.36</pre>	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144 0.187 0.444 US/II (m) 26.00	all Area btal Pi work Slope (1:X) 199.6 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.1 Netty • Σ Ι. (h 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A Contri pe Volu Design I.Area (ha) 0.036 0.036 0.072 0.052 0.056 0.139 0.452 vork Rea Area a) FI 0.036	ibuting (ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.0	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((((((((((.495 39 .orm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) .600 .600 .600 .600 .600 .600 .600 .60	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 300 300 300 Cap (1/s) 36.7	(1/s) 4.8 14.0 9.8	
1.000 1.001 2.000	1.000 1.001 2.000 2.001 2.002 1.002 3.000 3.000 Rain (mm/hr) 50.00 50.00	<pre>(m) 29.544 17.748 19.626 23.531 28.881 37.381 88.854 T.C. (mins) 4.53 4.86 4.36 4.36 4.78</pre>	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144 0.187 0.444 US/II (m) 26.000 25.85. 26.001	all Area btal Pi work Slope (1:X) 199.6 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.1 Netw • Σ Ι. (h 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A Contri pe Volu Design I.Area (ha) 0.036 0.072 0.052 0.056 0.139 0.452 Vork Ra Area a) FI 0.036 0.036 0.103 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.0452	ibuting (1 ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((((((((((.495 39 .orm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) .600 .600 .600 .600 .600 .600 .600 .60	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 300 300 300 Cap (1/s) 36.7 36.6 36.6 36.6	(1/s) 4.8 14.0 9.8	
1.000 1.001 2.000 2.001 2.002	1.000 1.001 2.001 2.002 1.002 3.000 Rain (mm/hr) 50.00 50.00 50.00 50.00	<pre>(m) 29.544 17.748 19.626 23.531 28.881 37.381 88.854 T.C. (mins) 4.53 4.86 4.36 4.36 4.78 5.30</pre>	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144 0.187 0.444 US/II (m) 26.000 25.85 26.000 25.90 25.78	all Area btal Pi work Slope (1:X) 199.6 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.1 Netw • Σ Ι. (h 0 0 2 0 4 0	A Contri pe Volu Design I.Area (ha) 0.036 0.036 0.072 0.052 0.056 0.139 0.452 Vork Rea Area Area A. Area A. Area 0.036 0.072 0.056 0.139 0.452 Vork Rea A. Area (ha) 0.036 0.072 0.056 0.139 0.452 Vork Rea (ha) 0.036 0.072 0.056 0.139 0.452 Vork Rea (ha) 0.036 0.072 0.056 0.139 0.452 Vork Rea (ha) 0.036 0.072 0.139 0.452 Vork Rea (ha) 0.036 0.072 0.139 0.452 Vork Rea (ha) 0.036 0.072 0.056 0.139 0.036 0.072 0.139 0.452 Vork Rea (ha) 0.036 0.072 0.056 0.139 0.036 0.072 0.056 0.139 0.0452 Vork Rea (ha) 0.036 0.072 0.056 0.139 0.036 0.072 0.139 0.452 (ha) 0.036 0.036 0.072 0.056 0.139 0.036 0.103 0.072 0.139 0.036 0.103 0.072 0.124 0.036 0.103 0.072 0.124 0.139 0.124 0.179	ibuting (ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.0	ha) = 4 = 167.2 for St Base Flow (1/ () () () () () () () () () () () () ()	.495 39 .orm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) .600 .600 .600 .600 .600 .600 .600 .60	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 300 300 300 Cap (1/s) 36.7 36.6 36.6 36.6 36.6	(1/s) 4.8 14.0 9.8 16.8 24.3	
1.000 1.001 2.000 2.001	1.000 1.001 2.000 2.001 2.002 1.002 3.000 3.000 50.00 50.00 50.00	<pre>(m) 29.544 17.748 19.626 23.531 28.881 37.381 88.854 T.C. (mins) 4.53 4.86 4.36 4.36 4.78 5.30</pre>	Tota To <u>Net</u> Fall (m) 0.148 0.089 0.098 0.118 0.144 0.187 0.444 US/II (m) 26.000 25.85 26.000 25.90	all Area btal Pi work Slope (1:X) 199.6 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.1 Netw • Σ Ι. (h 0 0 2 0 4 0	A Contri pe Volu Design I.Area (ha) 0.036 0.036 0.072 0.052 0.056 0.139 0.452 Vork Rea Area Area A. FI 0.036 0.103 0.036 0.103 0.036 0.103 0.036 0.036 0.072 0.124	ibuting (1 ume (m ³) T.E. (mins) I 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 0.00 0.00 0.00 0.0 0.	ha) = 4 = 167.2 for St Base Flow (1/ ((((((((((((((((((.495 39 .orm /s) (0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	k mm) .600 .600 .600 .600 .600 .600 .600 .60	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 300 300 300 Cap (1/s) 36.7 36.6 36.6 36.6	(1/s) 4.8 14.0 9.8 16.8 24.3	

©1982-2011 Micro Drainage Ltd

CS Consulting Er	ngineer	S							Page	e 2		
45 Beech Street			Job	no.	B089							
Centralpoint			ODG	r					$\left \right $			200
London, EC2Y 8A	AD		Sto	rm De	sign						P	
Date May 2021					by RF	M					ഫ്	menor
File B089-Storm	RevA.M	DX		cked	-					150		<u> </u>
Innovyze -	_				w.12.6	5						
			Net	work	Design	Table	for S	torm				
	PN	-		-	I.Area		Base		k	HYD	DIA	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)	
	1.003	40.953	0.205	200.0	0.216	0.00		0.0	0.600	0	450	
	1.004	14.057	0.070	200.0	0.080	0.00		0.0	0.600	0	450	
			0 515	100 5							45.5	
		51.226							0.600	0	450	
		60.882 17.367				0.00			0.600		<mark>525</mark> 525	
		6.561				0.00			0.600		525 525	
				,						Ű		
	5.000	65.447	0.327	200.1	0.403	4.00		0.0	0.600	0	375	
		17.620							0.600	0	525 525	
	4.005	80.823	0.404	200.0	0.463	0.00		0.0	0.600	0	525	
	1.005	52.000	0.260	200.0	0.497	0.00		0.0	0.600	0	600	
		36.317							0.600		600	
	1.007	14.870	0.074	200.0	0.000	0.00		0.0	0.600	0	600	
	1.008	25.105	0.126	200.0	0.072	0.00		0.0	0.600	0	600	
	c	FO 404	0 504	100 0	0 050						0.7.5	
		70.401							0.600		375	
	0.UUI	79.597	0.031	120.0	0.358	0.00		0.0	0.600	0	375	
	1.009	9.188	0.037	250.0	0.000	0.00		0.0	0.600	0	675	
	1.010	76.735	0.307	250.0	0.000	0.00			0.600		675	
		17.297						0.0	0.600	0	675	
				N		1 + .	malal -					
				Netv	VORK RE	esults	тарте					
PN	Rain	T.C.		ΣΙ.		Σ Base		Add		Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(h	a) Fl	.ow (1/s)) (l/s)	(1	/s)	(m/s)	(l/s)	(1/s)
1.003	48.59	6.34	23.40	6 1	.091	0.0	0 0.0	1	0.0	1.43	228.1	143.5
1.004	48.07	6.51	23.20	1 1	.171	0.0	0 0.0	I	0.0	1.43	228.1	152.4
	50 00	1 10	22.00	0 0	326	0	0 0 0		0 0	2 0 2	300 0	11 2
	50.00				.326	0.0					323.3	44.2
4.000	50 00	/ 07	21 /1	·2 //	507		0 0 0		$\cap \cap$	·) ·)/	/18L //	68 2
4.001			21.41		.504 521	0.0			0.0		485.0 484 9	
	50.00	5.00	21.41 20.80 20.63	4 0	.504 .521 .521	0.0	0 0.0	1	0.0	2.24	485.0 484.9 484.9	70.6

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.003	48.59 48.07		23.406	1.091	0.0	0.0	0.0		228.1	
4.000	50.00		22.000	0.326	0.0	0.0	0.0		323.3	44.2
4.001	50.00		21.413	0.504	0.0	0.0	0.0		485.0	68.2
4.002	50.00		20.804	0.521	0.0	0.0	0.0		484.9	70.6
4.003	50.00	5.05	20.630	0.521	0.0	0.0	0.0	2.24	484.9	70.6
5.000	50.00	4.85	22.000	0.403	0.0	0.0	0.0	1.28	141.0	54.6
4.004	50.00	5.24	20.565	0.962	0.0	0.0	0.0	1.58	342.1	130.3
4.005	49.42	6.09	20.477	1.425	0.0	0.0	0.0	1.58	342.1	190.8
1.005	46.55	7.01	19.998	3.094	0.0	0.0	0.0	1.72	485.8	390.0
1.006	45.56	7.36	19.738	3.471	0.0	0.0	0.0	1.72	485.8	428.3
1.007	45.17	7.51	19.556	3.471	0.0	0.0	0.0	1.72	485.8	428.3
1.008	44.53	7.75	19.482	3.544	0.0	0.0	0.0	1.72	485.8	428.3
6.000	50.00	4.65	21.000	0.356	0.0	0.0	0.0	1.81	200.1	48.3
6.001	50.00	5.55	20.296	0.714	0.0	0.0	0.0	1.48	163.1	96.7
1.009	44.29	7.84	19.281	4.258	0.0	0.0	0.0	1.65	591.5	510.7
1.010	42.41	8.62	19.150	4.258	0.0	0.0	0.0	1.65	591.5	510.7
1.011	42.01	8.79	18.843	4.495	0.0	0.0	0.0	1.65	591.5	511.5

	ulting	-	neers	5					Page	e 3		
Beec	h Stre	et			Job no.	B089						
ntral	point				ODG				$ \Gamma$		(COC)	\sim
ndon,	EC2Y	8AD			Storm De	esign				<u> </u>	ц©	\bigcirc
te Ma	y 2021				Designed	d by F	RFM				ปักกระ	Tor
le BO	89-Sto	rm_Rev	vA.MI	X	Checked	by					-10	
novyz	e				Network	W.12.	. 6					
					Manhol	e Sche	edules fo	or Storm				
MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdron (mm)
1	28.720	2.720	Open	Manhole	1200	1.000	26.000	225				
2	28.060	2.208	Open	Manhole	1200	1.001	25.852	225	1.000	25.852	225	
3	28.100	2.100	Open	Manhole	1200	2.000	26.000	225				
4	28.100	2.198	Open	Manhole	1200	2.001	25.902	225	2.000	25.902	225	
5	27.810	2.026	Open	Manhole	1200	2.002	25.784	225	2.001	25.784	225	
6	27.610	2.045	Open	Manhole	1200	1.002	25.565	300	1.001	25.763	225	12
									2.002	25.640	225	
			_	Manhole	1200	3.000	24.000	300				
8	26.680	3.274	Open	Manhole	1200	1.003	23.406	450	1.002	25.378	300	182
									3.000	23.556	300	
				Manhole		1.004	23.201		1.003	23.201	450	
	26.090		-	Manhole		4.000	22.000	450				
	25.480		-	Manhole		4.001	21.413		4.000	21.488	450	
	24.370		-	Manhole		4.002	20.804	525		20.804	525	
	24.620		-	Manhole		4.003	20.630	525	4.002	20.630	525	
	24.500		-	Manhole Manhole		5.000	22.000 20.565	375	4 0 0 0		525	
15	24.750	4.105	open	Mannore	1200	4.004	20.565	525	4.003	20.565 21.673	375	95
16	25 080	4 603	Open	Manhole	1200	4.005	20.477	525	4.004	20.477	525	35
			_	Manhole		1.005			1.004		450	298
± /				-10111010	1200	1	10.000	000	4.005	20.073	525	250
18	24.870	5.132	Open	Manhole	1200	1.006	19.738	600	1.005	19.738	600	
			_	Manhole		1.007	19.556		1.006	19.556	600	
			_	Manhole		1.008	19.482		1.007	19.482	600	
			-	Manhole		6.000	21.000					
			_	Manhole		6.001	20.296		6.000	20.296	375	
23	22.450	3.169	Open	Manhole		1.009	19.281		1.008	19.356	600	
									6.001	19.765	375	18
24	23.500	4.350	Open	Manhole	1200	1.010	19.150	675	1.009	19.244	675	9
25	23.000	4.157	Open	Manhole	1200	1.011	18.843	675	1.010	18.843	675	
Mh-26	21.200	2.426	Open	Manhole	0		OUTFALL		1.011	18.774	675	

CS Consulting Engine	ers						E	Page 4
45 Beech Street			Jo	b no. B	089			
Centralpoint			OD	G				
London, EC2Y 8AD			St	orm Des	ign			THERE O
Date May 2021				signed	2			Denerge
File B089-Storm RevA	. MDX			ecked b	-			L'un les la
Innovyze				twork W	-			\sim
			P	IPELINE	SCHEDU	LES for	Storm	
				Up	stream	Manhole	2	
PN	-			C.Level	I.Level	D.Depth	МН	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connectio	on (mm)
1.000	0	225	1	28.720	26.000	2.495	Open Manho	ble 1200
1.001	0	225	2	28.060	25.852	1.983	Open Manho	ble 1200
2 . 0.0		225	2	00 100		1 075	Orana Maraha	1
2.000 2.001	0			28.100 28.100			Open Manho Open Manho	
2.001	0			27.810			Open Manho Open Manho	
2.002	0	223	J	27.010	23.704	1.001	open Manno	1200
1.002	0	300	6	27.610	25.565	1.745	Open Manho	ble 1200
3.000	0	300	7	27.000	24.000	2.700	Open Manho	ble 1200
1.003	0	450	8	26 690	23.406	2 0 2 1	Open Manho	ble 1200
1.003	0	450	9		23.201		Open Manho Open Manho	
4.000	0	450		26.090			Open Manho	ole 1200
4.001	0			25.480			Open Manho	
4.002	0	525	12	24.370	20.804	3.041	Open Manho	ole 1200
4.003	0	525	13	24.620	20.630	3.465	Open Manho	ble 1200
5.000	0	375	14	24.500	22.000	2.125	Open Manho	ble 1200
4.004	0	525	15	24.750	20.565	3,660	Open Manho	ole 1200
	0	525			20.303		Open Manho	

Downstream Manhole

1.005 o 600 17 26.030 19.998 5.432 Open Manhole 1200

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
			_					
	29.544			28.060			Open Manhole	
1.001	17.748	200.0	6	27.610	25.763	1.622	Open Manhole	1200
2.000	19.626	200.3	4	28.100	25.902	1.973	Open Manhole	1200
2.001	23.531	200.0	5	27.810	25.784	1.801	Open Manhole	1200
2.002	28.881	200.0	6	27.610	25.640	1.745	Open Manhole	1200
1.002	37.381	200.0	8	26.680	25.378	1.002	Open Manhole	1200
3.000	88.854	200.1	8	26.680	23.556	2.824	Open Manhole	1200
1.003	40.953	200.0	9	26.170	23.201	2.519	Open Manhole	1200
1.004	14.057	200.0	17	26.030	23.131	2.449	Open Manhole	1200
4.000	51.226	100.1	11	25.480	21.488	3.542	Open Manhole	1200
4.001	60.882	100.0	12	24.370	20.804	3.041	Open Manhole	1200
4.002	17.367	100.0	13	24.620	20.630	3.465	Open Manhole	1200
4.003	6.561	100.0	15	24.750	20.565	3.660	Open Manhole	1200
5.000	65.447	200.1	15	24.750	21.673	2.702	Open Manhole	1200
4.004	17.620	200.0	16	25.080	20.477	4.078	Open Manhole	1200
4.005	80.823	200.0	17	26.030	20.073	5.432	Open Manhole	1200
1.005	52.000	200.0	18	24.870	19.738	4.532	Open Manhole	1200
			@10	00 0011	2.6.1	D '	T 1	

©1982-2011 Micro Drainage Ltd

CS Consulting Engine	ers					P	age 5
45 Beech Street		J	ob no. B	089			
Centralpoint		С	DG				
London, EC2Y 8AD		S	torm Des	ign			TTICE C
Date May 2021		E	esigned	by RFM			Dentra
File B089-Storm RevA	.MDX	C	hecked b	v			
Innovyze			etwork W	-			
			PIPELINE	SCHEDU	LES for	Storm	
			PIPELINE	SCHEDU	LES for	Storm	
					Maraha 1.		
			Up	stream	Mannole	2	
PN	Hvd D	iam MH	C.Level	I.Level	D.Depth	МН	MH DIAM., L*W
	-	mm) Nam		(m)	-		-
		•	c (,	(111)	(m)	Connectio	n (mm)
1.006	0	-	8 24.870			Open Manho	
		600 1		19.738	4.532		le 1200
	0	600 1 600 1	8 24.870	19.738 19.556	4.532 4.344	Open Manho	le 1200 le 1200
1.007	0	600 1 600 1 600 2	8 24.870 9 24.500 0 24.500	19.738 19.556 19.482	4.532 4.344 4.418	Open Manho Open Manho Open Manho	le 1200 le 1200 le 1200
1.007 1.008	0	600 1 600 1 600 2 375 2	8 24.870 9 24.500	19.738 19.556 19.482 21.000	4.532 4.344 4.418 0.625	Open Manho Open Manho	le 1200 le 1200 le 1200 le 1200
1.007 1.008 6.000		600 1 600 1 600 2 375 2 375 2	8 24.870 9 24.500 0 24.500 1 22.000	19.738 19.556 19.482 21.000 20.296	4.532 4.344 4.418 0.625 1.779	Open Manho Open Manho Open Manho Open Manho Open Manho	le 1200 le 1200 le 1200 le 1200 le 1350
1.007 1.008 6.000 6.001		600 1 600 1 600 2 375 2 375 2 675 2	 8 24.870 9 24.500 0 24.500 1 22.000 2 22.450 	19.738 19.556 19.482 21.000 20.296 19.281	4.532 4.344 4.418 0.625 1.779 2.494	Open Manho Open Manho Open Manho Open Manho	le 1200 le 1200 le 1200 le 1200 le 1350 le 1200
1.007 1.008 6.000 6.001 1.009		600 1 600 1 600 2 375 2 375 2 675 2 675 2	 8 24.870 9 24.500 0 24.500 1 22.000 2 2.450 3 22.450 	19.738 19.556 19.482 21.000 20.296 19.281 19.150	4.532 4.344 4.418 0.625 1.779 2.494 3.675	Open Manho Open Manho Open Manho Open Manho Open Manho	le 1200 le 1200 le 1200 le 1200 le 1350 le 1200 le 1200
1.007 1.008 6.000 6.001 1.009 1.010		600 1 600 1 600 2 375 2 375 2 675 2 675 2	 8 24.870 9 24.500 0 24.500 1 22.000 2 2.450 3 22.450 4 23.500 5 23.000 	19.738 19.556 19.482 21.000 20.296 19.281 19.150	4.532 4.344 4.418 0.625 1.779 2.494 3.675 3.482	Open Manho Open Manho Open Manho Open Manho Open Manho Open Manho Open Manho	le 1200 le 1200 le 1200 le 1200 le 1350 le 1200 le 1200

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1 006	36.317	200 0	19	24,500	19.556	1 311	Open Manhole	1200
	14.870		20	24.500			Open Manhole	
1.008	25.105	200.0	23	22.450	19.356		Open Manhole	1200
6.000	70.401	100.0	22	22.450	20.296	1.779	Open Manhole	1350
6.001	79.597	150.0	23	22.450	19.765	2.310	Open Manhole	1200
1.009	9.188	250.0	24	23.500	19.244	3.581	Open Manhole	1200
1.010	76.735	250.0	25	23.000	18.843	3.482	Open Manhole	1200
1.011	17.297	250.0	Mh-26	21.200	18.774	1.751	Open Manhole	0

CS Consulting Engineers		Page 6
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	THERE
Date May 2021	Designed by RFM	Drenner
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	L

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gro	ss	Im	p.	Pipe	Total
Number	Туре	Name	(%)	Area	(ha)	Area	(ha)	(h	a)
1 000	TT o o m		100	0	0.26	~	0.000		0 026
1.000	User	-	100 100		0.036		0.036		0.036
	User	-							
2.000	User	-	100		.072		0.072		0.072
2.001	User	-	100		.052		0.052		0.052
2.002	User	-	100		.056		.056		0.056
1.002	User	-	100		.139		.139		0.139
3.000	User	-	100		.094		.094		0.094
	User	-	100		.358		.358		0.452
1.003	User	-	100		.216		.216		0.216
1.004	User	-	100		.080		.080		0.080
4.000	User	-	100		.326		.326		0.326
4.001	User	-	100		.177		.177		0.177
4.002	User	-	100		.018		0.018		0.018
4.003	-	-	100	C	.000	C	0.000		0.000
5.000	User	-	100	C	.403	C	.403		0.403
4.004	User	-	100	С	.037	C	0.037		0.037
4.005	User	-	100	C	.463	C	.463		0.463
1.005	User	-	100	C	.497	C	.497		0.497
1.006	User	-	100	C	.378	C	.378		0.378
1.007	-	-	100	C	.000	C	0.000		0.000
1.008	User	-	100	C	.072	C	.072		0.072
6.000	User	-	100	C	.356	C	.356		0.356
6.001	User	-	100	C	.358	C	.358		0.358
1.009	-	-	100	C	.000	C	0.000		0.000
1.010	-	-	100	C	.000	C	0.000		0.000
1.011	User	-	100	C	.237	C	.237		0.237
				Т	'otal	Г	otal		Total
				4	.495	4	.495		4.495

Free Flowing Outfall Details for Storm

Outfall Pipe Number				el Min I. Level (m)		
1.011	Mh-26	21.200	18.77	18.750	0	0

	lgineer	s							Page	e 1		
45 Beech Street	9001	-	Jo	o no.	B089					-		
Centralpoint			OD						5	<mark>√_</mark> ۲		202
London, EC2Y 8A	D		St	orm De	sian						TERO (\mathcal{I}
Date May 2021					l by RI	FM						2
File B089-Storm	RevA.M	IDX		ecked	-					25		G
Innovyze					W.12.0	5					\sim	
				0.102.11								
			Exist	ing N	etwork	. Deta	ils fo	or Sto	orm			
		PN	Length	Fall	Slope 3	.Area	T.E.	k	HYD	DIA		
			(m)	(m)	(1:X)	(ha)	(mins)	(mm)	SECT	(mm)		
		1.000	29.544	0.148	199.6	0.036	4.00	0.600	0	225		
			17.748					0.600				
			19.626 23.531					0.600		225 225		
			28.881					0.600		225		
		1.002	37.381	0.187	200.0	0.139	0.00	0.600	0	300		
		3 000	88.854		200 1	0 150	1 00	0 600	~	300		
		3.000	00.004	0.444	200.1	0.402	4.00	0.600	0	200		
		1.003	40.953	0.205	200.0	0.216	0.00	0.600	0	450		
		1.004	14.057	0.070	200.0	0.080	0.00	0.600	0	450		
		1 000	E1 000	0 510	100 1	0 200	4	0		4 5 0		
			51.226 60.882					0.600		450 525		
			17.367					0.600		525		
		4.003	6.561	0.066	100.0	0.000	0.00	0.600	0	525		
		F 000	CE 447	0 007	000 1	0 400	4 00	0 000		075		
		5.000	65.447	0.327	200.1	0.403	4.00	0.600	0	375		
		4.004	17.620	0.088	200.0	0.037	0.00	0.600	0	525		
		4.005	80.823	0.404	200.0	0.463	0.00	0.600	0	525		
		1 005	50 000	0 0 0 0		0 407	0 00	0 000		600		
			52.000 36.317					0.600		600 600		
			14.870					0.600		600		
		1.008	25 105	0.126	200.0			0.600	0	600		
						DS/0	CL DS/	'IL	DS	Ctrl	US/MH	
	PN	US/MH	US/CL									
	PN			US/IL (m)	C.Dept			-	Depth		(mm)	
	PN	US/MH	US/CL					-	Depth (m)			
	1.000	US/MH Name	US/CL (m) 28.720	(m) 26.000	C.Dept (m) 2.49	ch (m)) (m	852	(m) 1.983		(mm) 1200	
		US/MH Name	US/CL (m)	(m) 26.000	C.Dept (m) 2.49	ch (m)) (m	852	- (m)		(mm)	
	1.000	US/MH Name 1 2	US/CL (m) 28.720	(m) 26.000 25.852	C.Dept (m) 2.49 1.98	ch (m) 95 28.0 33 27.6) (m	852 763	(m) 1.983		(mm) 1200	
	1.000 1.001	US/MH Name 1 2 3	US/CL (m) 28.720 28.060	(m) 26.000 25.852 26.000	C.Dept (m) 2.49 1.98	ch (m) 95 28.0 33 27.6 75 28.1) (m 160 25.3 510 25.7	852 763 902	(m) 1.983 1.622		(mm) 1200 1200	
	1.000 1.001 2.000	US/MH Name 1 2 3 4	US/CL (m) 28.720 28.060 28.100	(m) 26.000 25.852 26.000 25.902	C.Dept (m) 2.49 1.98 1.87 1.97	ch (m) 95 28.0 33 27.6 75 28.1 73 27.8) (m 160 25.1 510 25.1 .00 25.1	852 763 902 784	(m) 1.983 1.622 1.973		(mm) 1200 1200 1200	
	1.000 1.001 2.000 2.001 2.002	US/MH Name 1 2 3 4 5	US/CL (m) 28.720 28.060 28.100 28.100 27.810	(m) 26.000 25.852 26.000 25.902 25.784	C.Dept (m) 2.49 1.98 1.87 1.97 1.80	ch (m) 05 28.0 33 27.6 75 28.1 73 27.8 01 27.6) (m 60 25.3 10 25.3 00 25.3 10 25.3 10 25.3	852 763 902 784 640	(m) 1.983 1.622 1.973 1.801 1.745		(mm) 1200 1200 1200 1200 1200	
	1.000 1.001 2.000 2.001	US/MH Name 1 2 3 4 5	US/CL (m) 28.720 28.060 28.100 28.100	(m) 26.000 25.852 26.000 25.902 25.784	C.Dept (m) 2.49 1.98 1.87 1.97 1.80	ch (m) 05 28.0 33 27.6 75 28.1 73 27.8 01 27.6) (m 160 25.3 10 25.3 00 25.3 10 25.3	852 763 902 784 640	(m) 1.983 1.622 1.973 1.801		(mm) 1200 1200 1200 1200	
	1.000 1.001 2.000 2.001 2.002	US/MH Name 1 2 3 4 5 6	US/CL (m) 28.720 28.060 28.100 28.100 27.810	(m) 26.000 25.852 26.000 25.902 25.784 25.565	C.Dept (m) 2.49 1.98 1.97 1.80 1.74	ch (m) 95 28.0 33 27.6 75 28.1 73 27.8 91 27.6 12 26.6) (m 60 25.3 10 25.3 00 25.3 10 25.3 10 25.3	852 763 902 784 640 378	(m) 1.983 1.622 1.973 1.801 1.745		(mm) 1200 1200 1200 1200 1200	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000	US/MH Name 1 2 3 4 5 6 7	US/CL (m) 28.720 28.060 28.100 28.100 27.810 27.610 27.000	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000	C.Dept (m) 2.49 1.98 1.98 1.97 1.80 1.74 2.70	th (m) 05 28.0 03 27.6 75 28.1 73 27.8 01 27.6 15 26.6 00 26.6) (m 160 25.3 10 25	852 763 902 784 640 378 556	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824		(mm) 1200 1200 1200 1200 1200 1200 1200	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003	US/MH Name 1 2 3 4 5 6 7 8	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406	C.Dept (m) 2.49 1.98 1.98 1.97 1.80 5.1.74 2.70 5.2.82	th (m) 05 28.0 03 27.6 75 28.1 73 27.8 01 27.6 15 26.6 00 26.6 24 26.1) (m 160 25.1 10 25	852 763 902 784 640 378 556 201	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519		(mm) 1200 1200 1200 1200 1200 1200 1200 120	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000	US/MH Name 1 2 3 4 5 6 7 8	US/CL (m) 28.720 28.060 28.100 28.100 27.810 27.610 27.000	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406	C.Dept (m) 2.49 1.98 1.98 1.97 1.80 5.1.74 2.70 5.2.82	th (m) 05 28.0 03 27.6 75 28.1 73 27.8 01 27.6 15 26.6 00 26.6 24 26.1) (m 160 25.3 10 25	852 763 902 784 640 378 556 201	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824		(mm) 1200 1200 1200 1200 1200 1200 1200	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003	US/MH Name 1 2 3 4 5 6 7 8 9	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201	C.Dept (m) 2.49 1.98 1.97 1.80 1.74 2.70 5.2.82 2.51	th (m) 05 28.0 03 27.6 05 28.1 07 28.1 03 27.6 04 27.6 05 26.6 00 26.6 24 26.1 19 26.0) (m 160 25.1 10 25	852 763 902 784 640 378 556 201 131	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519		(mm) 1200 1200 1200 1200 1200 1200 1200 120	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.003 1.004 4.000 4.001	US/MH Name 1 2 3 4 5 6 7 7 8 9 10 11	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413	C.Dept (m) 2.49 1.98 1.98 1.97 2.70 2.70 2.82 2.51 3.64 3.54	th (m) 05 28.0 03 27.6 03 27.6 01 27.6 01 27.6 02 26.6 03 26.6 04 26.0 05 26.0 06 26.0 10 25.4 12 24.3) (m 160 25.1 10 25	 852 763 902 784 640 378 556 201 131 488 804 	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041		(mm) 1200 1200 1200 1200 1200 1200 1200 12	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.003 1.004 4.000 4.001 4.002	US/MH Name 1 2 3 4 5 6 7 7 8 9 10 11 12	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480 24.370	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413 20.804	C.Dept (m) 2.49 1.98 1.98 1.97 2.10 2.70 2.82 2.51 3.64 3.54 3.04	th (m) 05 28.0 03 27.6 03 27.6 04 27.6 05 28.1 07 28.1 01 27.6 01 27.6 01 27.6 02 26.6 04 26.1 19 26.0 10 25.4 12 24.3 14 24.3) (m 160 25.1 10 25	852 763 902 784 640 378 556 201 131 488 804 630	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041 3.465		(mm) 1200 1200 1200 1200 1200 1200 1200 12	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.003 1.004 4.000 4.001	US/MH Name 1 2 3 4 5 6 7 7 8 9 10 11 12	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413 20.804	C.Dept (m) 2.49 1.98 1.98 1.97 2.10 2.70 2.82 2.51 3.64 3.54 3.04	th (m) 05 28.0 03 27.6 03 27.6 04 27.6 05 28.1 07 28.1 01 27.6 01 27.6 01 27.6 02 26.6 04 26.1 19 26.0 10 25.4 12 24.3 14 24.3) (m 160 25.1 10 25	852 763 902 784 640 378 556 201 131 488 804 630	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041		(mm) 1200 1200 1200 1200 1200 1200 1200 12	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.003 1.004 4.000 4.001 4.002	US/MH Name	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480 24.370	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413 20.804 20.630	C.Dept (m) 2.49 1.98 1.98 1.97 2.70 2.70 2.82 2.51 3.64 3.54 3.46	th (m) 05 28.0 03 27.6 03 27.6 12 28.1 13 27.8 14 27.6 15 26.6 10 26.6 11 29.6 12 26.0 10 25.4 12 24.3 11 24.6 12 24.7) (m 160 25.1 10 25	852 763 902 784 640 378 556 201 131 488 804 630 565	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041 3.465		(mm) 1200 1200 1200 1200 1200 1200 1200 12	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.004 4.000 4.001 4.002 4.003 5.000	US/MH Name	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480 24.370 24.620	<pre>(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413 20.804 20.630 22.000</pre>	C.Dept (m) 2.49 1.98 1.98 1.97 2.70 2.70 2.82 2.51 3.64 3.54 3.04 3.46 2.12	ch (m. 05 28.0 03 27.6 03 27.6 12 28.1 13 27.8 14 27.6 15 26.6 10 26.6 10 26.0 11 24.0 12 24.3 11 24.6 12 24.7 12 24.7 12 24.7) (m 160 25.3 10 25	 852 763 902 784 640 378 556 201 131 488 804 630 565 673 	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041 3.465 3.660 2.702		(mm) 1200 1200 1200 1200 1200 1200 1200 120	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.004 4.000 4.001 4.002 4.003 5.000 4.004	US/MH Name	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480 24.370 24.620 24.500	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413 20.804 20.630 22.000 22.000 20.565	C.Dept (m) 2.49 1.98 1.97 1.80 2.70 2.70 2.82 2.51 3.64 3.54 3.04 3.46 2.12 3.66	th (m. 05 28.0 03 27.6 03 27.6 01 27.6 02 26.6 03 26.6 04 26.1 15 26.6 10 25.4 12 24.3 12 24.6 12 24.7 12 24.7 12 24.7 13 24.7 14 24.7 15 26.0) (m 160 25.3 10 20.3 10 20	 852 763 902 784 640 378 556 201 131 488 804 630 565 673 477 	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041 3.465 3.660 2.702 4.078		(mm) 1200 1200 1200 1200 1200 1200 1200 12	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.004 4.000 4.001 4.002 4.003 5.000	US/MH Name	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480 24.370 24.620	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413 20.804 20.630 22.000 22.000 20.565	C.Dept (m) 2.49 1.98 1.97 1.80 2.70 2.70 2.82 2.51 3.64 3.54 3.04 3.46 2.12 3.66	th (m. 05 28.0 03 27.6 03 27.6 01 27.6 02 26.6 03 26.6 04 26.1 15 26.6 10 25.4 12 24.3 12 24.6 12 24.7 12 24.7 12 24.7 13 24.7 14 24.7 15 26.0) (m 160 25.3 10 25	 852 763 902 784 640 378 556 201 131 488 804 630 565 673 477 	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041 3.465 3.660 2.702		(mm) 1200 1200 1200 1200 1200 1200 1200 120	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.004 4.000 4.001 4.002 4.003 5.000 4.004	US/MH Name 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480 24.370 24.620 24.500	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413 20.804 20.630 22.000 22.000 20.565 20.477	C.Dept (m) 2.49 1.98 1.98 1.97 2.70 2.70 2.82 2.51 3.64 3.54 3.04 3.46 4.07	ch (m. 05 28.0 03 27.6 03 27.6 12 28.1 13 27.8 14 27.6 15 26.6 10 26.6 10 26.0 11 24.6 12 24.3 11 24.6 12 24.3 12 24.6 12 24.7 13 25.4 14 24.6 15 26.0 10 25.4 12 24.3 13 24.6 14 24.6 15 24.7 15 24.7 16 25.0 17 26.0) (m 160 25.3 10 20.3 10 20	 852 763 902 784 640 378 556 201 131 488 804 630 565 673 477 073 	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041 3.465 3.660 2.702 4.078		(mm) 1200 1200 1200 1200 1200 1200 1200 12	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.004 4.000 4.001 4.002 4.003 5.000 4.004 4.005 1.005 1.005	US/MH Name 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480 24.370 24.620 24.500 24.500 24.750 25.080	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413 20.804 20.630 22.000 22.000 20.565 20.477 19.998 19.738	C.Dept (m) 2.49 1.98 1.98 1.97 2.70 2.70 2.82 2.51 3.64 3.54 3.46 2.12 3.66 4.0 ⁻¹ 3.66 4.0 ⁻¹ 3.66 4.0 ⁻¹	ch (m. 05 28.0 03 27.6 23 27.6 12 27.8 12 27.6 12 27.6 12 26.6 10 26.6 10 26.4 11 24.6 12 24.3 11 24.6 12 24.7 13 25.0 14 24.4 15 26.0 16 25.4 17 24.7 18 24.7 19 26.0 10 25.0 11 24.6 12 24.3 14 24.6 15 24.7 16 25.0 17 26.0 18 24.8 19 24.5	(m 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 25.1 100 20.1 100 20.1 100 20.1 100 19.1	 852 763 902 784 640 378 556 201 131 488 804 630 565 673 477 073 738 556 	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041 3.465 3.660 2.702 4.078 5.432 4.532 4.344		(mm) 1200 1200 1200 1200 1200 1200 1200 12	
	1.000 1.001 2.000 2.001 2.002 1.002 3.000 1.003 1.004 4.000 4.001 4.002 4.003 5.000 4.004 4.005 1.005	US/MH Name	US/CL (m) 28.720 28.060 28.100 27.810 27.610 27.610 27.000 26.680 26.170 26.090 25.480 24.370 24.620 24.500 24.500 25.080	(m) 26.000 25.852 26.000 25.902 25.784 25.565 24.000 23.406 23.201 22.000 21.413 20.804 20.630 22.000 22.000 20.565 20.477 19.998 19.738 19.556	C.Dept (m) 2.49 1.98 1.98 1.97 2.70 2.70 2.82 2.51 3.64 3.54 3.04 3.46 4.35 4.35 4.35	ch (m. 05 28.0 03 27.6 03 27.6 04 27.8 05 28.1 07 28.1 01 27.6 01 27.6 01 27.6 02 26.6 00 26.6 01 25.4 12 24.3 12 24.6 55 24.7 25 24.7 50 25.0 78 26.0 82 24.5 82 24.5 84 24.5	(m 100 25.3 100 23.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3 100 20.3	852 763 902 784 640 378 556 201 131 488 804 630 555 673 477 073 738 556 482	(m) 1.983 1.622 1.973 1.801 1.745 1.002 2.824 2.519 2.449 3.542 3.041 3.465 3.660 2.702 4.078 5.432 4.532		(mm) 1200 1200 1200 1200 1200 1200 1200 12	

CS Consulting	Engin	eers							Page	e 2	
45 Beech Stree	et		Jo	ob no.	B089					-	
Centralpoint			OI	DG					1		
London, EC2Y	8AD		St	corm De	esign						STO C
Date May 2021			De	esigne	d by F	RFM					DIMERCIC
File B089-Stor	cm_Rev	A.MDX	Ch	necked	by						<u>- nec</u>
Innovyze			Ne	etwork	W.12.	. 6					
			Exis	ting N	letwor	k Deta	ils fo	or Sto	rm		
		PN	Length	n Fall	Slope	I.Area	T.E.	k	HYD	DIA	
			(m)	(m)	(1:X)	(ha)	(mins)	(mm)	SECT	(mm)	
						0.356		0.600	0		
		6.001	79.597	0.531	150.0	0.358	0.00	0.600	0	375	
		1 009	9 189	3 0 037	250 0	0.000	0 00	0.600	0	675	
						0.000		0.600		675	
		1.011	17.297	0.069	250.0	0.237	0.00	0.600	0	675	
PN		US/CL (US		DS/IL	DS			Ctrl	US/MH
	Name	(m)	(m) C	Depth	(m)	(m)	C.Dept	:h			(mm)
				(m)			(m)				
6.000	21	22.000 2	1.000	0.625	22.450	20.296	1.77	19			1200
6.001		22.450 2				19.765		0			1350
1.009 1.010		22.450 1 23.500 1) 19.244) 18.843		-	h/Flc	w Relati	onship 1200 1200
1.010		23.000 1) 18.843) 18.774			h/Flc	w Relati	onship 1200
								ī			±
			Free F	lowing	g Outf	all De	tails	for S	torm		
		Outf	all C	Dutfall	C. Lev	vel I. I	evel	Min	D,L	W	
		Pipe N	lumber	Name	(m)	(1	n) I	. Level	L (mm)	(mm)	
								(m)			
			1.011	Mh-26	21.2	200 18	.774	18.750) (0 0	
			S	imulat	ion C	riteria	a for	Storm			
		Mana tan	a Dunad	EE Coof	E 0 040		l Cour		hoot		
		Volumetri Areal Be								are (l/s otal Flo) 0.000 w 20.000
			ot Start							a Storag	
		Hot St	art Lev	vel (mm)) (C		F	Run Ti	.me (mins) 60
М	anhole	Headloss	Coeff	(Global)) 0.500	C	Οι	itput I	Interv	ral (mins) 1
	-	t Hydrogr line Cont	-						mber	of Time/2	Area Diagrams O
				Svnthe	etic R	ainfal	1 Deta	ails			
				<u></u>	JULU P		- DCLC	U			
			ll Mode			F	SR	P	rofil	e Type W:	inter
	Retu	rn Period	(years)		1	00		Cv (Si	ummer) (0.750

Kainiaii Mouei	FSK	LIOIIIE IÀbe	WINCEL
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	17.000	Storm Duration (mins)	15
Ratio R	0.300		

CS Consul	ting Engi	neers				Pa	age 3		
45 Beech	Street		Job no	. в089					5
Centralpo	int		ODG						
London,	EC2Y 8AD		Storm	Design			MUR		
Date May	2021		 \		ที่การ				
File B089	-Storm Rev	vA.MDX	Checke	ed by			<u>L</u> C		حاريك
Innovyze	_			k W.12.6					
-									
			Onli	ine Contro	ols for St	torm			
					0 = 0 (=)-	1 0 0 0 .	/	. 10.0	
	Depth/F	low Relat	lonship M	anhole: 2	3, DS/PN:	1.009,	Volume (m³): 19.0	
			I	nvert Level	(m) 19.28	1			
Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s
0.200	29.0000	1.400	29.0000	2.600	29.0000	3.800	29.0000	5.000	29.000
0.400	29.0000	1.600	29.0000	2.800	29.0000			5.200	29.000
0.600	29.0000	1.800	29.0000	3.000	29.0000	4.200	29.0000	5.400	29.000
0.800	29.0000	2.000	29.0000	3.200	29.0000	4.400	29.0000	5.600	29.000
1.000	29.0000	2.200	29.0000	3.400	29.0000	4.600	29.0000	5.800	29.000
1.200	29.0000	2.400	29.0000	3.600	29.0000	4.800	29.0000	6.000	29.000
	Depth/F	low Relat	ionship M	anhole: 2	5, DS/PN:	1.011,	Volume (m³): 31.7	
			I	nvert Level	(m) 18.84	3			
Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s
0.200	29.0000 29.0000		29.0000	2.600 2.800	29.0000 29.0000		29.0000 29.0000	5.000 5.200	29.000 29.000
0.400	29.0000		29.0000 29.0000	2.800	29.0000			5.400	
0.800			29.0000	3.200	29.0000			5.600	
1.000			29.0000	3.400	29.0000			5.800	
1.200	29.0000		29.0000		29.0000		29.0000	6.000	

CS Consultin	g Engine	eers				P	age 4		
45 Beech Str			Job no	. B089					
Centralpoint			ODG				$\nabla \gamma A$		\sim
London, EC2				Design				SLO	Um
Date May 202				ed by RFM				and the	R
File B089-St		.MDX	Checke						El Y
Innovyze				k W.12.6					
			110 CWOL						
			Stora	ge Structi	ures for	Storm			
		Ta	nk or Po	nd Manhole	e: 23, DS	G/PN: 1.0	09		
				nvert Level					
Depth (m) 2	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m) An	rea (m²)
0.000	2000.0				0.0	3.600	0.0		0.0
0.200 0.400	2000.0 2000.0				0.0	3.800 4.000	0.0		0.0
0.400	2000.0				0.0				
0.800	2000.0	2.000	2000.0	3.200	0.0	4.400	0.0		
1.000	2000.0	2.200	0.0	3.400	0.0	4.600	0.0		

CS Consulting Engineers	S Consulting Engineers					
45 Beech Street	Job no. B089					
Centralpoint	ODG					
London, EC2Y 8AD	Storm Design					
Date May 2021	Designed by RFM					
File B089-Storm_RevA.MDX	Checked by					
Innovyze	Network W.12.6					

Summary of Results for 15 minute 100 year Winter (Storm)

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status
		(/	(/	, ,		(_/ -/	(_/ -/	
1.000	1	26.563	0.338	0.000	0.38	0.0	13.1	SURCHARGED
1.001	2	26.532	0.455	0.000	1.13	0.0	37.0	SURCHARGED
2.000	3	27.090	0.865	0.000	0.73	0.0	24.1	SURCHARGED
2.001	4	27.036	0.909	0.000	1.23	0.0	41.4	SURCHARGED
2.002	5	26.856	0.847	0.000	1.73	0.0	59.1	SURCHARGED
1.002	6	26.418	0.553	0.000	1.98	0.0	143.5	SURCHARGED
3.000	7	26.713	2.413	0.000	2.01	0.0	152.4	FLOOD RISK
1.003	8	24.726	0.870	0.000	1.78	0.0	361.7	SURCHARGED
1.004	9	24.043	0.392	0.000	2.28	0.0	385.4	SURCHARGED
4.000	10	24.290	1.840	0.000	0.45	0.0	133.2	SURCHARGED
4.001	11	24.245	2.307	0.000	0.33	0.0	146.3	SURCHARGED
4.002	12	24.195	2.866	0.000	0.56	0.0	179.9	FLOOD RISK
4.003	13	24.162	3.007	0.000	0.78	0.0	192.9	SURCHARGED
5.000	14	24.318	1.943	0.000	1.10	0.0	146.7	FLOOD RISK
4.004	15	24.145	3.055	0.000	0.98	0.0	244.3	SURCHARGED
4.005	16	24.073	3.071	0.000	1.08	0.0	343.8	SURCHARGED
1.005	17	23.567	2.970	0.000	1.94	0.0	830.8	SURCHARGED
1.006	18	22.565	2.227	0.000	2.23	0.0	911.3	SURCHARGED
1.007	19	21.628	1.472	0.000	2.67	0.0	912.8	SURCHARGED
1.008	20	20.790	0.708	0.000	2.61	0.0	926.4	SURCHARGED
6.000	21	21.827	0.452	0.000	0.66	0.0	125.6	FLOOD RISK
6.001	22	21.512	0.841	0.000	1.57	0.0	243.3	SURCHARGED
1.009	23	20.136	0.180	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	20.626	0.801	0.000	0.05	0.0	29.0	SURCHARGED
1.011	25	20.645	1.127	0.000	0.07	0.0	29.0	SURCHARGED

CS Consulting Engineers	Page 1	
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	
Date May 2021	Designed by RFM	
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

Summary of Results for 30 minute 100 year Winter (Storm)

	US/MH	Water Level	Surcharged Depth	Volume		Overflow	Pipe Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(1/s)	Status
1.000	1	26.339	0.114	0.000	0.32	0.0	10.9	SURCHARGED
1.001	2	26.312	0.235	0.000	0.96	0.0	31.6	SURCHARGED
2.000	3	26.763	0.538	0.000	0.64	0.0	21.3	SURCHARGED
2.001	4	26.719	0.592	0.000	1.09	0.0	36.7	SURCHARGED
2.002	5	26.578	0.569	0.000	1.55	0.0	52.8	SURCHARGED
1.002	6	26.230	0.365	0.000	1.73	0.0	125.3	SURCHARGED
3.000	7	25.930	1.630	0.000	1.78	0.0	134.8	SURCHARGED
1.003	8	24.462	0.606	0.000	1.58	0.0	321.2	SURCHARGED
1.004	9	23.937	0.286	0.000	2.03	0.0	343.5	SURCHARGED
4.000	10	23.913	1.463	0.000	0.36	0.0	105.0	SURCHARGED
4.001	11	23.869	1.931	0.000	0.31	0.0	135.7	SURCHARGED
4.002	12	23.821	2.492	0.000	0.45	0.0	144.9	SURCHARGED
4.003	13	23.790	2.634	0.000	0.60	0.0	149.5	SURCHARGED
5.000	14	23.942	1.567	0.000	0.95	0.0	125.6	SURCHARGED
4.004	15	23.773	2.684	0.000	0.94	0.0	234.8	SURCHARGED
4.005	16	23.709	2.708	0.000	1.05	0.0	332.4	SURCHARGED
1.005	17	23.257	2.659	0.000	1.83	0.0	782.3	SURCHARGED
1.006	18	22.379	2.041	0.000	2.13	0.0	870.9	SURCHARGED
1.007	19	21.543	1.387	0.000	2.55	0.0	871.5	SURCHARGED
1.008	20	20.796	0.715	0.000	2.50	0.0	887.1	SURCHARGED
6.000	21	21.402	0.027	0.000	0.59	0.0	111.8	SURCHARGED
6.001	22	21.168	0.497	0.000	1.39	0.0	215.2	SURCHARGED
1.009	23	20.277	0.321	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	21.221	1.396	0.000	0.05	0.0	29.0	SURCHARGED
1.011	25	21.238	1.720	0.000	0.07	0.0	29.0	SURCHARGED

CS Consulting Engineers	Page 1	
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	
Date May 2021	Designed by RFM	
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

Summary of Results for 45 minute 100 year Winter (Storm)

	US/MH	Water Level	Surcharged Depth	Volume	Flow /		Pipe Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(1/s)	Status
1.000	1	26.143	-0.082	0.000	0.27	0.0	9.4	OK
1.001	2	26.120	0.043	0.000	0.79	0.0	26.0	SURCHARGED
2.000	3	26.461	0.236	0.000	0.54	0.0	17.9	SURCHARGED
2.001	4	26.423	0.296	0.000	0.92	0.0	30.8	SURCHARGED
2.002	5	26.321	0.311	0.000	1.31	0.0	44.7	SURCHARGED
1.002	6	26.066	0.201	0.000	1.45	0.0	104.7	SURCHARGED
3.000	7	25.248	0.948	0.000	1.50	0.0	113.7	SURCHARGED
1.003	8	24.192	0.336	0.000	1.33	0.0	270.2	SURCHARGED
1.004	9	23.823	0.171	0.000	1.71	0.0	288.8	SURCHARGED
4.000	10	23.126	0.676	0.000	0.29	0.0	86.2	SURCHARGED
4.001	11	23.088	1.150	0.000	0.26	0.0	113.9	SURCHARGED
4.002	12	23.046	1.717	0.000	0.39	0.0	125.6	SURCHARGED
4.003	13	23.018	1.863	0.000	0.54	0.0	134.1	SURCHARGED
5.000	14	23.137	0.762	0.000	0.79	0.0	105.4	SURCHARGED
4.004	15	23.004	1.914	0.000	0.85	0.0	211.9	SURCHARGED
4.005	16	22.953	1.951	0.000	0.93	0.0	295.8	SURCHARGED
1.005	17	22.598	2.000	0.000	1.60	0.0	682.0	SURCHARGED
1.006	18	21.915	1.578	0.000	1.86	0.0	759.6	SURCHARGED
1.007	19	21.262	1.106	0.000	2.22	0.0	756.8	SURCHARGED
1.008	20	20.681	0.599	0.000	2.18	0.0	773.6	SURCHARGED
6.000	21	21.192	-0.183	0.000	0.51	0.0	96.2	OK
6.001	22	20.897	0.226	0.000	1.19	0.0	184.2	SURCHARGED
1.009	23	20.356	0.400	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	20.817	0.992	0.000	0.05	0.0	28.9	SURCHARGED
1.011	25	20.834	1.316	0.000	0.07	0.0	29.0	SURCHARGED

CS Consulting Engineers	Page 1	
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	
Date May 2021	Designed by RFM	
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	·

Summary of Results for 60 minute 100 year Winter (Storm)

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status
		(/	(/	()	<u>-</u> -	(_/ _/	(-/-/	
1.000	1	26.075	-0.150	0.000	0.24	0.0	8.1	OK
1.001	2	26.005	-0.072	0.000	0.71	0.0	23.3	OK
2.000	3	26.256	0.031	0.000	0.47	0.0	15.6	SURCHARGED
2.001	4	26.223	0.096	0.000	0.79	0.0	26.5	SURCHARGED
2.002	5	26.148	0.139	0.000	1.12	0.0	38.3	SURCHARGED
1.002	6	25.961	0.096	0.000	1.25	0.0	90.5	SURCHARGED
3.000	7	24.803	0.503	0.000	1.30	0.0	98.6	SURCHARGED
1.003	8	24.034	0.178	0.000	1.15	0.0	234.4	SURCHARGED
1.004	9	23.758	0.107	0.000	1.48	0.0	250.8	SURCHARGED
4.000	10	22.464	0.014	0.000	0.25	0.0	74.7	SURCHARGED
4.001	11	22.430	0.492	0.000	0.24	0.0	103.9	SURCHARGED
4.002	12	22.393	1.064	0.000	0.36	0.0	116.4	SURCHARGED
4.003	13	22.368	1.213	0.000	0.48	0.0	120.3	SURCHARGED
5.000	14	22.461	0.086	0.000	0.69	0.0	91.6	SURCHARGED
4.004	15	22.355	1.266	0.000	0.78	0.0	195.0	SURCHARGED
4.005	16	22.311	1.310	0.000	0.82	0.0	261.6	SURCHARGED
1.005	17	22.039	1.442	0.000	1.40	0.0	596.9	SURCHARGED
1.006	18	21.519	1.182	0.000	1.64	0.0	668.9	SURCHARGED
1.007	19	21.022	0.866	0.000	1.95	0.0	667.5	SURCHARGED
1.008	20	20.595	0.513	0.000	1.92	0.0	679.9	SURCHARGED
6.000	21	21.173	-0.202	0.000	0.43	0.0	81.0	OK
6.001	22	20.679	0.008	0.000	1.01	0.0	157.0	SURCHARGED
1.009	23	20.412	0.456	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	20.327	0.502	0.000	0.05	0.0	28.9	SURCHARGED
1.011	25	20.343	0.825	0.000	0.07	0.0	29.0	SURCHARGED

CS Consulting Engineers	Page 1	
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	
Date May 2021	Designed by RFM	
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

Summary of Results for 90 minute 100 year Winter (Storm)

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status
PN	Name	(111)	(111)	(Cap.	(1/5)	(1/5)	Status
1.000	1	26.065	-0.160	0.000	0.18	0.0	6.2	OK
1.001	2	25.972	-0.105	0.000	0.55	0.0	18.0	OK
2.000	3	26.096	-0.129	0.000	0.38	0.0	12.7	OK
2.001	4	26.034	-0.093	0.000	0.64	0.0	21.6	OK
2.002	5	25.954	-0.055	0.000	0.91	0.0	31.2	OK
1.002	6	25.828	-0.037	0.000	1.00	0.0	72.4	OK
3.000	7	24.345	0.045	0.000	1.02	0.0	77.4	SURCHARGED
1.003	8	23.860	0.004	0.000	0.92	0.0	186.7	SURCHARGED
1.004	9	23.685	0.034	0.000	1.18	0.0	200.3	SURCHARGED
4.000	10	22.134	-0.316	0.000	0.19	0.0	57.2	OK
4.001	11	21.759	-0.179	0.000	0.20	0.0	86.7	OK
4.002	12	21.728	0.399	0.000	0.28	0.0	88.2	SURCHARGED
4.003	13	21.709	0.554	0.000	0.36	0.0	89.4	SURCHARGED
5.000	14	22.195	-0.180	0.000	0.53	0.0	70.5	OK
4.004	15	21.699	0.609	0.000	0.60	0.0	149.6	SURCHARGED
4.005	16	21.662	0.660	0.000	0.69	0.0	218.6	SURCHARGED
1.005	17	21.469	0.871	0.000	1.16	0.0	494.5	SURCHARGED
1.006	18	21.116	0.778	0.000	1.36	0.0	554.5	SURCHARGED
1.007	19	20.790	0.634	0.000	1.62	0.0	552.7	SURCHARGED
1.008	20	20.509	0.427	0.000	1.58	0.0	562.7	SURCHARGED
6.000	21	21.148	-0.227	0.000	0.33	0.0	62.3	OK
6.001	22	20.553	-0.118	0.000	0.80	0.0	123.9	OK
1.009	23	20.489	0.533	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	20.320	0.495	0.000	0.05	0.0	28.9	SURCHARGED
1.011	25	20.317	0.799	0.000	0.07	0.0	29.0	SURCHARGED

CS Consulting Engineers	Page 1	
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	
Date May 2021	Designed by RFM	
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

Summary of Results for 180 minute 100 year Winter (Storm)

	US/MH	Water Level	Surcharged Depth	Volume		Overflow	Pipe Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(1/s)	Status
1.000	1	26.050	-0.175	0.000	0.11	0.0	3.9	OK
1.001	2	25.943	-0.134	0.000	0.35	0.0	11.3	OK
2.000	3	26.074	-0.151	0.000	0.24	0.0	7.9	OK
2.001	4	26.001	-0.126	0.000	0.40	0.0	13.6	OK
2.002	5	25.907	-0.102	0.000	0.58	0.0	19.6	OK
1.002	6	25.740	-0.125	0.000	0.64	0.0	46.2	OK
3.000	7	24.178	-0.122	0.000	0.65	0.0	49.5	OK
1.003	8	23.654	-0.202	0.000	0.59	0.0	119.1	OK
1.004	9	23.496	-0.156	0.000	0.76	0.0	127.8	OK
4.000	10	22.104	-0.346	0.000	0.12	0.0	35.8	OK
4.001	11	21.536	-0.402	0.000	0.13	0.0	55.2	OK
4.002	12	20.953	-0.376	0.000	0.18	0.0	57.1	OK
4.003	13	20.896	-0.259	0.000	0.23	0.0	56.4	OK
5.000	14	22.149	-0.226	0.000	0.33	0.0	44.2	OK
4.004	15	20.889	-0.201	0.000	0.42	0.0	104.3	OK
4.005	16	20.864	-0.138	0.000	0.48	0.0	152.7	OK
1.005	17	20.782	0.184	0.000	0.75	0.0	321.7	SURCHARGED
1.006	18	20.646	0.309	0.000	0.88	0.0	360.6	SURCHARGED
1.007	19	20.627	0.471	0.000	1.06	0.0	360.7	SURCHARGED
1.008	20	20.618	0.537	0.000	1.04	0.0	368.3	SURCHARGED
6.000	21	21.115	-0.260	0.000	0.21	0.0	39.1	OK
6.001	22	20.617	-0.054	0.000	0.50	0.0	78.1	OK
1.009	23	20.611	0.655	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	20.450	0.625	0.000	0.05	0.0	28.9	SURCHARGED
1.011	25	20.444	0.926	0.000	0.07	0.0	29.0	SURCHARGED

CS Consulting Engineers		Page 1
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	THE READER
Date May 2021	Designed by RFM	
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	·

Summary of Results for 360 minute 100 year Winter (Storm)

	US/MH	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000	1	26.039	-0.186	0.000	0.07	0.0	2.4	OK
1.001	2	25.922	-0.155	0.000	0.21	0.0	6.9	OK
2.000	3	26.057	-0.168	0.000	0.15	0.0	4.8	OK
2.001	4	25.977	-0.150	0.000	0.25	0.0	8.3	OK
2.002	5	25.876	-0.133	0.000	0.35	0.0	12.0	OK
1.002	6	25.695	-0.170	0.000	0.39	0.0	28.3	OK
3.000	7	24.132	-0.168	0.000	0.40	0.0	30.3	OK
1.003	8	23.592	-0.264	0.000	0.36	0.0	73.0	OK
1.004	9	23.416	-0.235	0.000	0.46	0.0	78.4	OK
4.000	10	22.081	-0.369	0.000	0.07	0.0	21.9	OK
4.001	11	21.509	-0.429	0.000	0.08	0.0	33.7	OK
4.002	12	20.919	-0.410	0.000	0.11	0.0	34.9	OK
4.003	13	20.765	-0.391	0.000	0.14	0.0	34.9	OK
5.000	14	22.114	-0.261	0.000	0.20	0.0	27.0	OK
4.004	15	20.745	-0.344	0.000	0.26	0.0	64.4	OK
4.005	16	20.725	-0.276	0.000	0.30	0.0	95.5	OK
1.005	17	20.719	0.121	0.000	0.48	0.0	203.1	SURCHARGED
1.006	18	20.710	0.373	0.000	0.55	0.0	225.4	SURCHARGED
1.007	19	20.702	0.546	0.000	0.66	0.0	224.9	SURCHARGED
1.008	20	20.697	0.615	0.000	0.65	0.0	229.5	SURCHARGED
6.000	21	21.088	-0.287	0.000	0.13	0.0	23.9	OK
6.001	22	20.697	0.026	0.000	0.31	0.0	47.8	SURCHARGED
1.009	23	20.692	0.736	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	20.519	0.694	0.000	0.05	0.0	29.0	SURCHARGED
1.011	25	20.513	0.995	0.000	0.07	0.0	29.0	SURCHARGED

CS Consulting Engineers		Page 1
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	THE READ
Date May 2021	Designed by RFM	
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

Summary of Results for 720 minute 100 year Winter (Storm)

	US/MH	Water Level	Surcharged Depth	Volume		Overflow	Pipe Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000	1	26.030	-0.195	0.000	0.04	0.0	1.4	OK
1.001	2	25.905	-0.172	0.000	0.13	0.0	4.2	OK
2.000	3	26.045	-0.180	0.000	0.09	0.0	2.9	OK
2.001	4	25.960	-0.167	0.000	0.15	0.0	5.0	OK
2.002	5	25.854	-0.155	0.000	0.21	0.0	7.3	OK
1.002	6	25.663	-0.202	0.000	0.24	0.0	17.1	OK
3.000	7	24.100	-0.200	0.000	0.24	0.0	18.4	OK
1.003	8	23.548	-0.308	0.000	0.22	0.0	44.2	OK
1.004	9	23.363	-0.288	0.000	0.28	0.0	47.5	OK
4.000	10	22.061	-0.389	0.000	0.04	0.0	13.2	OK
4.001	11	21.485	-0.453	0.000	0.05	0.0	20.4	OK
4.002	12	20.892	-0.437	0.000	0.07	0.0	21.2	OK
4.003	13	20.733	-0.423	0.000	0.09	0.0	21.2	OK
5.000	14	22.087	-0.288	0.000	0.12	0.0	16.4	OK
4.004	15	20.704	-0.386	0.000	0.16	0.0	39.0	OK
4.005	16	20.702	-0.299	0.000	0.18	0.0	57.8	OK
1.005	17	20.698	0.100	0.000	0.29	0.0	123.8	SURCHARGED
1.006	18	20.692	0.355	0.000	0.34	0.0	137.1	SURCHARGED
1.007	19	20.686	0.531	0.000	0.40	0.0	136.7	SURCHARGED
1.008	20	20.682	0.601	0.000	0.39	0.0	139.5	SURCHARGED
6.000	21	21.068	-0.307	0.000	0.08	0.0	14.5	OK
6.001	22	20.683	0.012	0.000	0.19	0.0	29.0	SURCHARGED
1.009	23	20.678	0.721	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	20.498	0.673	0.000	0.05	0.0	29.0	SURCHARGED
1.011	25	20.492	0.974	0.000	0.07	0.0	29.0	SURCHARGED

CS Consulting Engineers	Page 1	
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	
Date May 2021	Designed by RFM	
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

Summary of Results for 1440 minute 100 year Winter (Storm)

	US/MH	Water Level	Surcharged Depth	Volume	•	Overflow	Pipe Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000	1	26.024	-0.201	0.000	0.03	0.0	0.9	OK
1.001	2	25.893	-0.184	0.000	0.08	0.0	2.5	OK
2.000	3	26.033	-0.192	0.000	0.05	0.0	1.8	OK
2.001	4	25.947	-0.180	0.000	0.09	0.0	3.0	OK
2.002	5	25.838	-0.172	0.000	0.13	0.0	4.4	OK
1.002	6	25.640	-0.225	0.000	0.14	0.0	10.3	OK
3.000	7	24.076	-0.224	0.000	0.15	0.0	11.1	OK
1.003	8	23.514	-0.342	0.000	0.13	0.0	26.7	OK
1.004	9	23.325	-0.326	0.000	0.17	0.0	28.7	OK
4.000	10	22.049	-0.401	0.000	0.03	0.0	8.0	OK
4.001	11	21.471	-0.467	0.000	0.03	0.0	12.3	OK
4.002	12	20.871	-0.458	0.000	0.04	0.0	12.8	OK
4.003	13	20.706	-0.449	0.000	0.05	0.0	12.8	OK
5.000	14	22.067	-0.308	0.000	0.07	0.0	9.9	OK
4.004	15	20.673	-0.417	0.000	0.09	0.0	23.6	OK
4.005	16	20.615	-0.387	0.000	0.11	0.0	34.9	OK
1.005	17	20.608	0.010	0.000	0.18	0.0	75.4	SURCHARGED
1.006	18	20.602	0.264	0.000	0.20	0.0	83.4	SURCHARGED
1.007	19	20.596	0.440	0.000	0.24	0.0	83.0	SURCHARGED
1.008	20	20.591	0.510	0.000	0.24	0.0	84.7	SURCHARGED
6.000	21	21.051	-0.324	0.000	0.05	0.0	8.7	OK
6.001	22	20.592	-0.079	0.000	0.11	0.0	17.5	OK
1.009	23	20.587	0.631	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	20.419	0.594	0.000	0.05	0.0	29.0	SURCHARGED
1.011	25	20.413	0.895	0.000	0.07	0.0	29.0	SURCHARGED

CS Consulting Engineers	Page 1	
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Storm Design	
Date May 2021	Designed by RFM	Dentregation
File B089-Storm_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

Summary of Results for 2880 minute 100 year Winter (Storm)

	US/MH	Water Level	Surcharged Depth	Volume	Flow /		Pipe Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000	1	26.017	-0.208	0.000	0.02	0.0	0.5	OK
1.001	2	25.883	-0.194	0.000	0.05	0.0	1.5	OK
2.000	3	26.026	-0.199	0.000	0.03	0.0	1.1	OK
2.001	4	25.936	-0.191	0.000	0.05	0.0	1.8	OK
2.002	5	25.826	-0.183	0.000	0.08	0.0	2.7	OK
1.002	6	25.624	-0.241	0.000	0.09	0.0	6.3	OK
3.000	7	24.060	-0.240	0.000	0.09	0.0	6.7	OK
1.003	8	23.490	-0.366	0.000	0.08	0.0	16.2	OK
1.004	9	23.297	-0.354	0.000	0.10	0.0	17.4	OK
4.000	10	22.035	-0.415	0.000	0.02	0.0	4.8	OK
4.001	11	21.455	-0.483	0.000	0.02	0.0	7.5	OK
4.002	12	20.859	-0.470	0.000	0.02	0.0	7.7	OK
4.003	13	20.691	-0.465	0.000	0.03	0.0	7.7	OK
5.000	14	22.051	-0.324	0.000	0.05	0.0	6.0	OK
4.004	15	20.646	-0.444	0.000	0.06	0.0	14.3	OK
4.005	16	20.565	-0.437	0.000	0.07	0.0	21.2	OK
1.005	17	20.385	-0.212	0.000	0.11	0.0	45.9	OK
1.006	18	20.380	0.042	0.000	0.13	0.0	51.1	SURCHARGED
1.007	19	20.374	0.219	0.000	0.15	0.0	50.9	SURCHARGED
1.008	20	20.370	0.289	0.000	0.15	0.0	51.8	SURCHARGED
6.000	21	21.041	-0.334	0.000	0.03	0.0	5.3	OK
6.001	22	20.375	-0.296	0.000	0.07	0.0	10.6	OK
1.009	23	20.365	0.409	0.000	0.08	0.0	28.9	SURCHARGED
1.010	24	20.198	0.373	0.000	0.05	0.0	28.9	SURCHARGED
1.011	25	20.192	0.674	0.000	0.07	0.0	29.0	SURCHARGED

Appendix D:

Foul Water WinDes Design

CS Consulting Engineers	Page 1	
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Foul Design	
Date May 2021	Designed by RFM	
File B089_Foul_RevA.MDX	Checked by	
Innovyze	Network W.12.6	· · · ·

FOUL SEWERAGE DESIGN

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.000
Flow Per Person (l/per/day)	222.00	Maximum Backdrop Height (m)	0.000
Persons per House	3.00	Min Design Depth for Optimisation (m)	0.000
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	1.00
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Storm

(m) (m) (1:X) (ha) Flow (1/s) (mm) SECT (mm) 1.000 90.299 0.451 200.0 0.000 0 0.0 1.500 0 225 1.001 23.581 0.118 200.0 0.000 0 0.0 1.500 0 225 1.002 23.581 0.118 200.0 0.000 0 0.0 1.500 0 225	
1.001 23.581 0.118 200.0 0.000 0 0.0 1.500 o 225	
	5
	5
1,002 23,301 0,110 200,0 0,000 0 0,0 1,300 0 223	5
2.000 42.699 0.213 200.0 0.000 0 0.0 1.500 o 225	5
2.001 50.000 0.250 200.0 0.000 0 0.0 1.500 o 225	5
2.002 6.550 0.033 200.0 0.000 0 0.0 1.500 o 225	5
2.003 26.183 0.131 200.0 0.000 0 0.0 1.500 o 225	5
2.004 37.811 0.189 200.0 0.000 0 0.0 1.500 o 225	5
2.005 22.247 0.111 200.0 0.000 0 0.0 1.500 o 225	5
3.000 46.153 0.231 200.0 0.000 0 0.0 1.500 o 225	5
2.006 23.262 0.116 200.0 0.000 0 0.0 1.500 o 225	5
2.007 9.763 0.049 200.0 0.000 0 0.0 1.500 o 225	5
2.008 72.510 0.363 200.0 0.000 0 0.0 1.500 o 225	5
1.003 31.911 0.160 200.0 0.000 0 0.0 1.500 o 225	5

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (l/s)	Flow (1/s)
1.000	24.500	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
1.001	24.049	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
1.002	23.931	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
2.000	23.700	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
	23.487	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
2.002	23.237	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
2.003	23.204	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
2.004	23.073	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
2.005	22.884	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
3.000	22.900	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
2.006	22.669	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
2.007	22.553	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
2.008	22.504	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
1.003	22.142	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0

CS Consulting Engineers		Page 2
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Foul Design	
Date May 2021	Designed by RFM	
File B089_Foul_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses		k (mm)	HYD SECT	DIA (mm)
4.000	14.205	0.071	200.0	0.000	0	0.0	1.500	0	225
	20.988 32.000			0.000 0.000	0 0		1.500 1.500	0 0	225 225
	64.101 30.000				0 0		1.500 1.500		225 225
1.006	47.074	0.235	200.0	0.000	0	0.0	1.500	0	225
6.000	59.957			0.000	0	0.0	1.500	0	225
6.001	45.272	0.226	200.0	0.000	0	0.0	1.500	0	225
6.002	41.250	0.206	200.0	0.000	0	0.0	1.500	0	225
1.007	62.223	0.311	200.0	0.000	0	0.0	1.500	0	225
1.008	15.196	0.076	200.0	0.000	0	0.0	1.500	0	225

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
4.000	23.950	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
	21.982 21.877	0.000 0.000	0.0	0 0	0.0	0 0	0.00	0.81 0.81	32.2 32.2	0.0
	23.000 22.679	0.000 0.000	0.0	0 0	0.0	0 0	0.00	0.81 0.81	32.2 32.2	0.0
1.006	21.717	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
6.001	20.500 20.200 19.974	0.000 0.000 0.000	0.0 0.0 0.0	0 0 0	0.0 0.0 0.0	0 0 0	0.00 0.00 0.00	0.81 0.81 0.81	32.2 32.2 32.2	0.0 0.0 0.0
	19.768 19.456	0.000 0.000	0.0	0 0	0.0	0 0	0.00	0.81 0.81	32.2 32.2	0.0

CS Consulting Engineers		Page 3
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Foul Design	
Date May 2021	Designed by RFM	
File B089_Foul_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Conr	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	27.000	2.500	Open	Manhole	1200	1.000	24.500	225				
2	26.600	2.551	Open	Manhole	1200	1.001	24.049	225	1.000	24.049	225	
Ex.MN	26.500	2.569	Open	Manhole	1200	1.002	23.931	225	1.001	23.931	225	
3	26.700	3.000	Open	Manhole	1200	2.000	23.700	225				
4	26.090	2.603	Open	Manhole	1200	2.001	23.487	225	2.000	23.487	225	
5	25.670	2.433	Open	Manhole	1200	2.002	23.237	225	2.001	23.237	225	
6	25.480	2.276	Open	Manhole	1200	2.003	23.204	225	2.002	23.204	225	
7	24.950	1.877	Open	Manhole	1200	2.004	23.073	225	2.003	23.073	225	
8	24.370	1.486	Open	Manhole	1200	2.005	22.884	225	2.004	22.884	225	
9	24.500	1.600	Open	Manhole	1200	3.000	22.900	225				
10	24.630	1.961	Open	Manhole	1200	2.006	22.669	225	2.005	22.773	225	103
									3.000	22.669	225	
11	25.080	2.527	Open	Manhole	1200	2.007	22.553	225	2.006	22.553	225	
12	25.100	2.596	Open	Manhole	1200	2.008	22.504	225	2.007	22.504	225	
13	26.030	3.888	Open	Manhole	1200	1.003	22.142	225	1.002	23.813	225	1671
									2.008	22.142	225	
14	25.500	1.550	Open	Manhole	1200	4.000	23.950	225				
15	25.550	3.568	Open	Manhole	1200	1.004	21.982	225	1.003	21.982	225	
									4.000	23.879	225	1897
16	25.170		Open	Manhole	1200	1.005	21.877		1.004	21.877	225	
17		1.500	-	Manhole	1200	5.000	23.000	225				
18	25.400	2.721	Open	Manhole	1200	5.001	22.679	225	5.000	22.679	225	
19	24.200	2.483	Open	Manhole	1200	1.006	21.717	225	1.005	21.717	225	
									5.001	22.529	225	812
20	22.000		-	Manhole	1200	6.000	20.500	225				
21		2.250	-	Manhole	1200	6.001	20.200	225	6.000	20.200	225	
22	22.400	2.426	-	Manhole	1200	6.002	19.974	225	6.001	19.974	225	
23	22.700	2.932	Open	Manhole	1200	1.007	19.768	225	1.006	21.482	225	1714

6.002

1.008

225 1.007

19.768

19.456

19.381

225

225

225

1200 1.008 19.456

OUTFALL

0

24 21.500 2.044 Open Manhole

Ex. MH 21.220 1.839 Open Manhole

CS Consulting Engineers		Page 4
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Foul Design	
Date May 2021	Designed by RFM	
File B089_Foul_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	Decc	(11111)	name	(111)	()	(,	connection	(1111)
1.000	0	225	1	27.000	24.500	2.275	Open Manhole	1200
1.001	0	225	2	26.600	24.049		Open Manhole	1200
1.002	0	225	Ex.MN	26.500	23.931		Open Manhole	1200
2.000	0	225	3	26.700	23.700	2.775	Open Manhole	1200
2.001	0	225	4	26.090	23.487	2.378	Open Manhole	1200
2.002	0	225	5	25.670	23.237	2.208	Open Manhole	1200
2.003	0	225	6	25.480	23.204	2.051	Open Manhole	1200
2.004	0	225	7	24.950	23.073	1.652	Open Manhole	1200
2.005	0	225	8	24.370	22.884	1.261	Open Manhole	1200
3.000	0	225	9	24.500	22.900	1.375	Open Manhole	1200
2.006	0	225	10	24.630	22.669	1 736	Open Manhole	1200
2.000	0	225	11	25.080	22.553		Open Manhole	1200
2.007	0	225	12	25.100	22.503		Open Manhole	1200
2.000	0	223	12	23.100	22.304	2.371	open Mannore	1200
1.003	0	225	13	26.030	22.142	3.663	Open Manhole	1200
							1	
4.000	0	225	14	25.500	23.950	1.325	Open Manhole	1200
1.004	0	225	15	25.550	21.982	3.343	Open Manhole	1200
1.005	0	225	16	25.170	21.877	3.068	Open Manhole	1200
			. –					
5.000	0	225	17	24.500	23.000		Open Manhole	1200
5.001	0	225	18	25.400	22.679	2.496	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	•
1.000	90.299	200.0	2	26.600	24.049	2.326	Open Manhole	e 1200
1.001	23.581	200.0	Ex.MN	26.500	23.931	2.344	Open Manhole	e 1200
1.002	23.581	200.0	13	26.030	23.813	1.992	Open Manhole	e 1200
	42.699		4				Open Manhole	
	50.000		5				Open Manhole	
	6.550		6	25.480			Open Manhole	
	26.183		7	24.950			Open Manhole	
	37.811		8		22.884		Open Manhole	
2.005	22.247	200.0	10	24.630	22.773	1.632	Open Manhole	e 1200
3.000	46.153	200.0	10	24.630	22.669	1.736	Open Manhole	e 1200
2.006	23.262	200.0	11	25.080	22.553	2.302	Open Manhole	e 1200
2.007	9.763	200.0	12	25.100	22.504	2.371	Open Manhole	e 1200
2.008	72.510	200.0	13	26.030	22.142	3.663	Open Manhole	e 1200
1.003	31.911	200.0	15	25.550	21.982	3.343	Open Manhole	e 1200
4.000	14.205	200.0	15	25.550	23.879	1.446	Open Manhole	e 1200
	20.988		16		21.877		Open Manhole	
1.005	32.000	200.0	19	24.200	21.717	2.258	Open Manhole	e 1200
	64.101 30.000		18	25.400			Open Manhole	
5.001	30.000	200.0	19	24.200	22.529	1.446	Open Manhole	e 1200

CS Consulting Engineers		Page 5
45 Beech Street	Job no. B089	
Centralpoint	ODG	
London, EC2Y 8AD	Foul Design	
Date May 2021	Designed by RFM	
File B089_Foul_RevA.MDX	Checked by	
Innovyze	Network W.12.6	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.006	0	225	19	24.200	21.717	2.258	Open Manhole	1200
6.000 6.001 6.002	0 0 0	225	20 21 22	22.000 22.450 22.400		2.025	Open Manhole Open Manhole Open Manhole	1200 1200 1200
1.007 1.008	0 0	225 225	23 24	22.700 21.500	19.768 19.456		Open Manhole Open Manhole	1200 1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.006	47.074	200.0	23	22.700	21.482	0.993	Open Manhole	1200
6.001	59.957 45.272 41.250	200.0	21 22 23		20.200 19.974 19.768	2.201	Open Manhole Open Manhole Open Manhole	1200 1200 1200
	62.223 15.196		24 Ex. MH		19.456 19.381		Open Manhole Open Manhole	1200 0

Surcharged Outfall Details for Storm

Outfall Pipe Number	Outfall Name		Level (m)		Min Level (m)	,		
1.008	Ex. MH	:	21.220	19.381	19.500	0	0	

Appendix E:

Irish Water Confirmation of Feasibility Letter

Gessica Silva CS Consulting 19-22 Dame Street Dublin 2 Dublin, Ireland D02E267

28 May 2020

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Dear Gessica Silva,

Re: Connection Reference No CDS19008657 pre-connection enquiry -Subject to contract | Contract denied

Connection for Housing Development of 900 unit(s) at O'Devaney Gardens, Dublin 7, County Dublin.

Irish Water has reviewed your pre-connection enquiry in relation to a water connection at O'Devaney Gardens, Dublin 7, County Dublin.

Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

Water

In order to accommodate the proposed connection to Irish Water network at the Premises, upgrade works are required to the network as follows:

- Connection main (Approx.) 35m of new 200mm ID pipe main to be laid to connect the site development to the newly laid 200mm ID main and connect up to the existing 150mm DI, as shown below, see red line on attached figure. Bulk meter to be installed on connection main with capability to link up to the online telemetry system. Connection between the new 200mm ID main and 150mm DI main will replace the existing 4" CI.
- Secondary connection main (Approx.) 20m of new 200mm ID pipe to be laid to connect the site development to the existing 12" CI, as shown below, see dark red line on attached figure. Operational valve to be installed on the connection main, to be set closed for normal operation.
- Pipe Upgrades (Approx.) 140m of new 200mm ID pipe to replace the existing 6" and 4" CI, as shown below, see orange line on attached figure.

Irish Water currently does not have any plans to extend its network in this area. Should you wish to progress with the connection you will be required to fund this network extension.

Wastewater

Irish Water is currently undertaking a hydraulic modelling assessment of the downstream network to confirm the available capacity. The outcome of investigative surveys on the downstream network to confirm connectivity will allow the hydraulic model to be updated to confirm the available capacity and any potential upgrades.

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

GN

W-HP-

Irish Water does not have any plans, in the current Capital Investment Programme (CIP), to undertake upgrades to facilitate this connection. Should upgrades be identified Irish Water may require you to provide a contribution of a relevant portion of the costs for the required upgrades.

Strategic Housing Development

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details. A design proposal for the water and/or wastewater infrastructure should be submitted to Irish Water for assessment. Prior to submitting your planning application, you are required to submit these detailed design proposals to Irish Water for review.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact Marko Komso from the design team on 022 54611 or email mkomso@water.ie. For further information, visit <u>www.water.ie/connections.</u>

Yours sincerely,

M Buyes

Maria O'Dwyer Connections and Developer Services

Required upgrades to the water infrastructure:

Uisce Éireann

Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Robert Fitzmaurice 19 22 Dame Street Dublin 2 D02 E267, Ireland

12 May 2021

Re: Design Submission for O'Devaney Gardens, Dublin 7, County Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS19008657

Dear Robert Fitzmaurice,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Alvaro Garcia Email: agarcia@water.ie

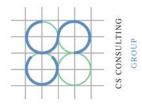
Yours sincerely,

yvonne Maesis

Yvonne Harris Head of Customer Operations

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Irish Water PO Box 448, South City Delivery Office, Cark City. www.water.ie

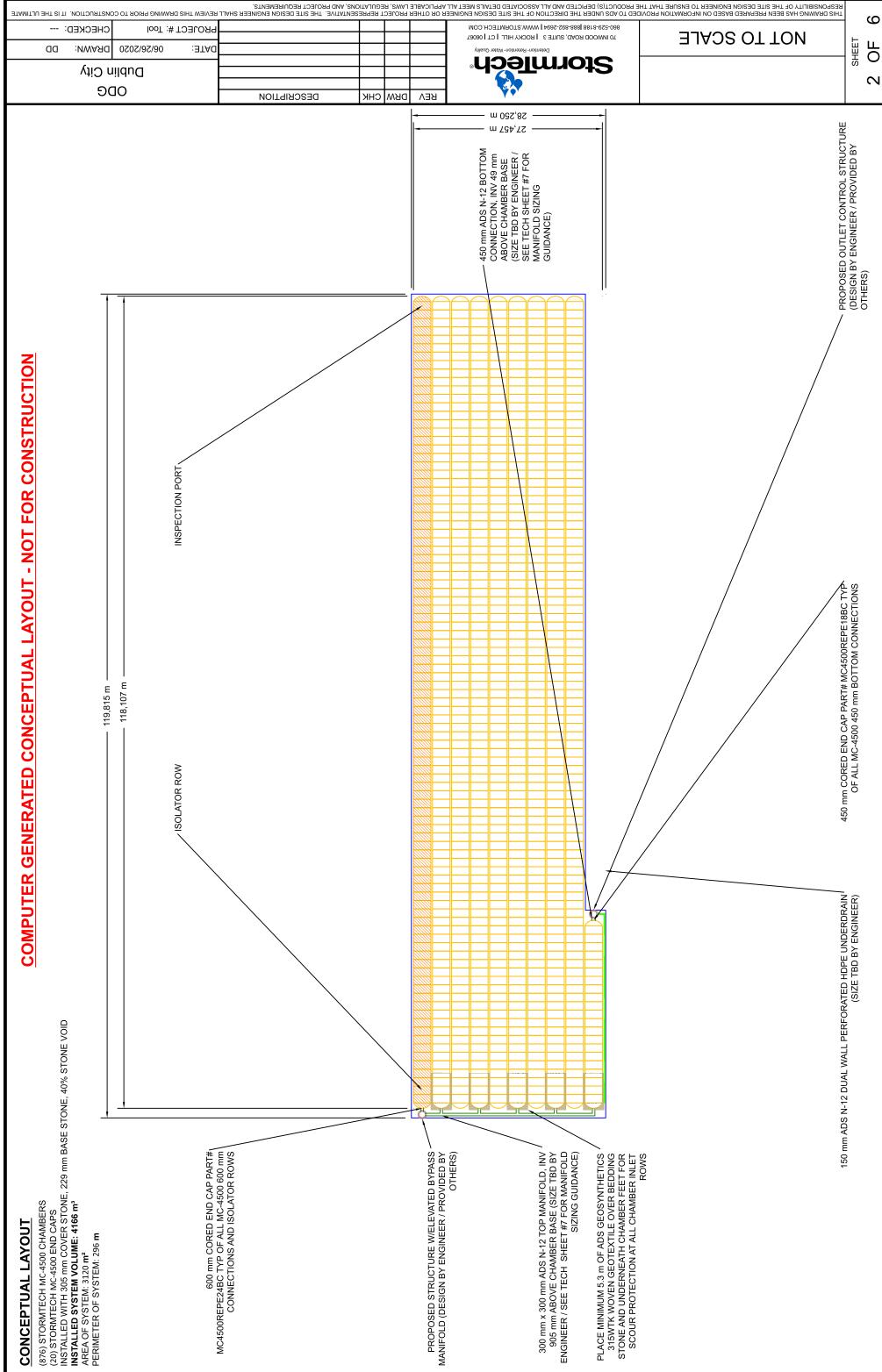

Appendix A

Document Title & Revision

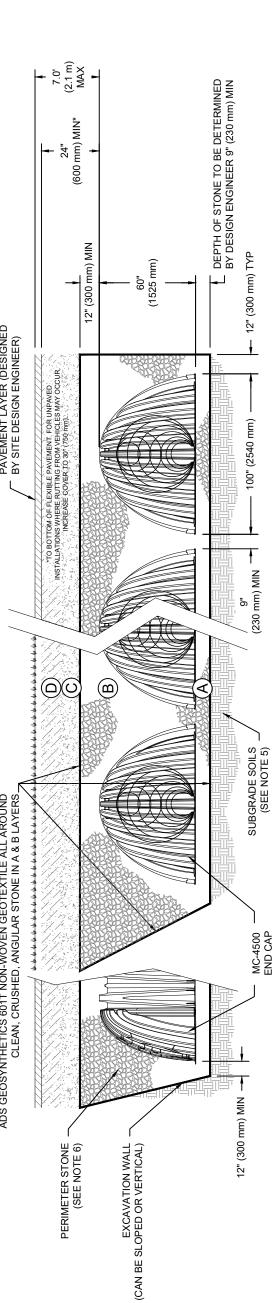
ODG-CSC-XX-XX-DR-C-0013_Proposed Drainage Layout ODG-CSC-XX-XX-DR-C-0015_Proposed Watermain ODG-CSC-XX-XX-DR-C-0021_Surface Water Profiles_Sheet_1 ODG-CSC-XX-XX-DR-C-0022_Surface Water Profiles_Sheet_2 ODG-CSC-XX-XX-DR-C-0023_Foul Sewer Profiles_Sheet_1 ODG-CSC-XX-XX-DR-C-0024_Foul Sewer Profiles_Sheet 2

For further information, visit <u>www.water.ie/connections</u>

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.


Appendix F:

Stormtech Attenuation Brochure


	<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>
	DDG
Õ	Dublin City
	IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-4500 CHAMBER SYSTEM
	1. STORMTECH MC-4500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTITIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
JLYPROPYLENE COPOLYMERS. L SPACE WITH NO INTERNAL SUPPORT PANELS THAT	 STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS.
L, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE I SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) D ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION	 STORMTECH RECOMMENDS 3 BACKFILL METHODS: STONESHOOTER LOCATED OFF THE CHAMBER BED. BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED	 THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE WWATER COLLECTION CHAMBERS".	MAINTAIN MINIMUM - 9" (230 mm)
L BE ALLOWED. THE CHAMBER MANUFACTURER SHALL -OR APPROVAL BEFORE DELIVERING CHAMBERS TO THE	 INLET AND OUTLET MANIFULDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 3/4-2" (20-50 mm) MEETING THE AASHTO M43 DESIGNATION OF #3 OR #4.
AL ENGINEER THAT DEMONSTRATES THAT THE SAFETY D 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM	 STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS SO AS NOT TO DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER DIFFER BY MORE THAN 12" (300 mm) BETWEEN ADJACENT CHAMBER ROWS.
AL ENGINEER THAT DEMONSTRATES THAT THE LOAD ATIONS, SECTION 12.12, ARE MET. THE 50 YEAR CREEP - THE AASHTO STRUCTURAL EVALUATION TO VERIFY	 STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. NOTES FOR CONSTRUCTION EQUIPMENT
EVALUATION IS BASED.	1. STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
D MANUFACTURING FACILITY.	THE USE OF EQUIPMENT OVER N NO EQUIPMENT IS ALLOW NO RUBBER TIRED LOADI WITH THE "STORMTECH N WITH THE "STORMTECH OVER TON
	3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.
	USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.
	CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

STORMTECH CHAMBER SPECIFICATIONS

- 1. CHAMBERS SHALL BE STORMTECH MC-4500 OR APPROVED EQUAL.
- 2. CHAMBERS SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLY
- 3. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL 5 WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, A THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SF LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED C FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 5. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SP WALL STORMWATER COLLECTION CHAMBERS".
- 6. CHAMBERS SHALL BE DESIGNED AND ALLOWABLE LOADS DETERMINED IN ACI FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMM
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL I SUBMIT THE FOLLOWING UPON REQUEST TO THE SITE DESIGN ENGINEER FOI PROJECT SITE:
- a. A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND ' F2787 AND BY AASHTO FOR THERMOPLASTIC PIPE.
- b. A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATI MODULUS DATA SPECIFIED IN ASTM F2418 MUST BE USED AS PART OF TI LONG-TERM PERFORMANCE.
- c. STRUCTURAL CROSS SECTION DETAIL ON WHICH THE STRUCTURAL EV/
- 8. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED M

					HE SITE DESIG			OOT :# TOJU	Выов то соизти	SUCTION. I
	ΒEΛ	МЯО	СНК]	TGIADZE	NOL	ITAQ	Z/90 ∷∃	ODG Dublid And DS02\∂	ity ity
╞╾					LAT		Э	oF ED. mm) FOR	ANS. ENT 2TS.	
	LAYER (DESIGNED SIGN ENGINEER)		L COVERAGES WITH A VIBRATORY COMPACTOR. RAKING OR DRAGGING WITHOUT COMPACTION	R #4 STONE WOULD STATE: "CLEAN, CRUSHED,	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ²³	NO COMPACTION REQUIRED.	WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR	PREPARE PER SITE DESIGN ENGINEER'S PLANS PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.	COMPACTION / DENSITY REQUIREMENT
<u> </u>	PAVEMENT LAYER (DESIGNE PY SITE DESIGN ENGINEER)		9" (230 mm) (MAX) LIFTS USING TWO FULL C A FLAT SURFACE MAY BE ACHIEVED BY RA	AR. FOR EXAMPLE, A SPECIFICATION FOR #	AASHTO M43 ¹ 3, 4	AASHTO M43' 3, 4	AASHTO M43' 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	AASHTO M145' A-1, A-2-4, A-3 OR	NA	AASHTO MATERIAL CLASSIFICATIONS
	601T NON-WOVEN GEOTEXTILE ALL AROUND CRUSHED, ANGULAR STONE IN A & B LAYERS		ANGULAR NO. 4 (AASHTO M43) STONE". STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.	ASE NOTE: THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FO	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	DESCRIPTION
	ADS GEOSYNTHETICS 601T NON-WOVEN CLEAN, CRUSHED, ANGUL		ANGULAR NO. 4 (AASHTO M43) STONE". STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AN WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN L EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.	IOTE: _ISTED AASHTO DESIGNATIONS ARE FOR GRADATIO	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	MATERIAL LOCATION
			ANGU STORI WHER EQUIP	PLEASE NOTE: 1. THE LISTE	A A	в	- 0	<u>ະທ</u> ິ ບ		

1. MC-4500 CHAMBERS SHALL CONFORM TO THE REQUIREMENTS OF ASTM F2418 "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".

MC-4500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".

"ACCEPTABLE FILL MATERIALS" TABLE ABOVE PROVIDES MATERIAL LOCATIONS, DESCRIPTIONS, GRADATIONS, AND COMPACTION REQUIREMENTS FOR FOUNDATION, EMBEDMENT, AND FILL MATERIALS.

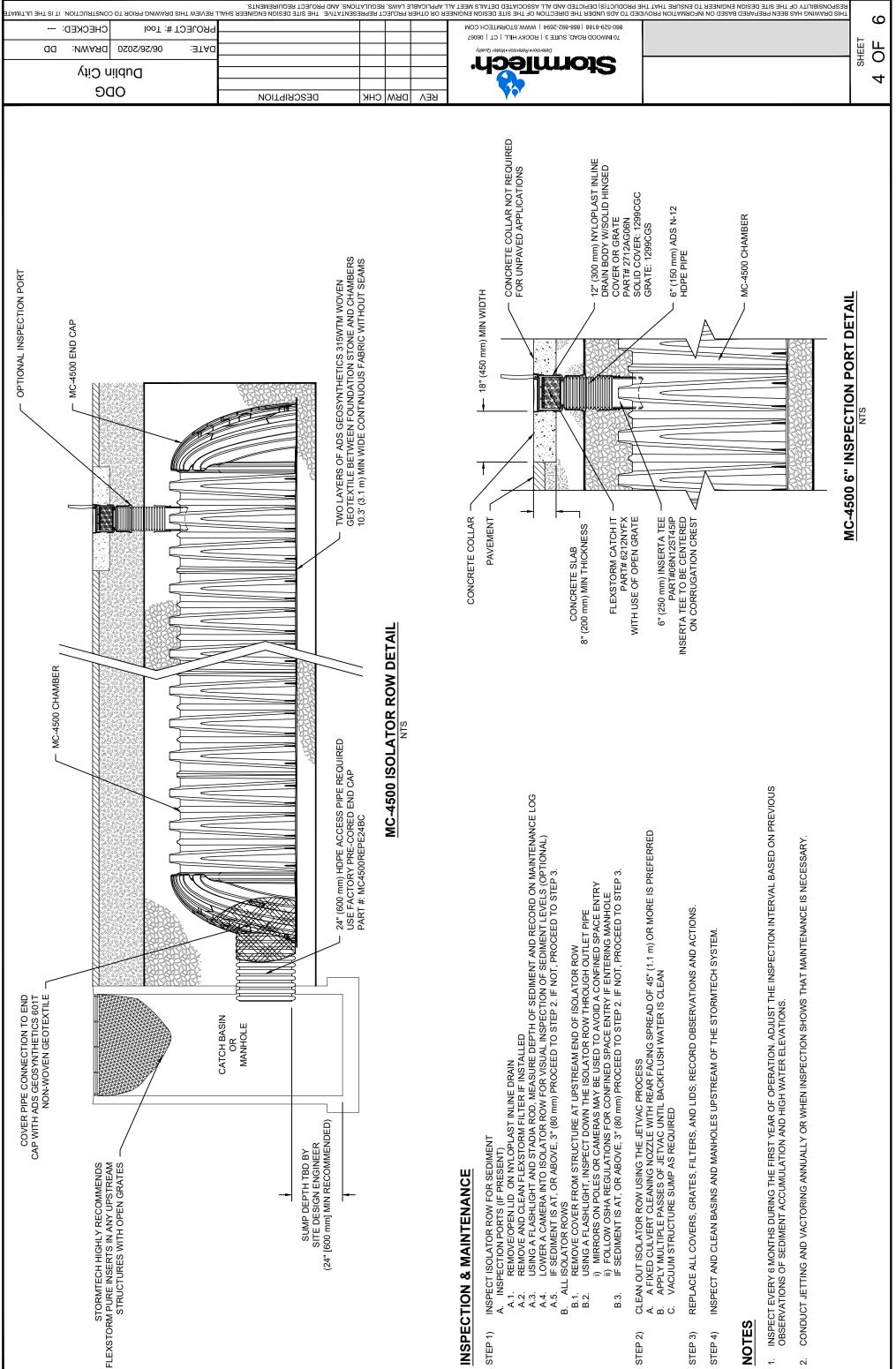
THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.

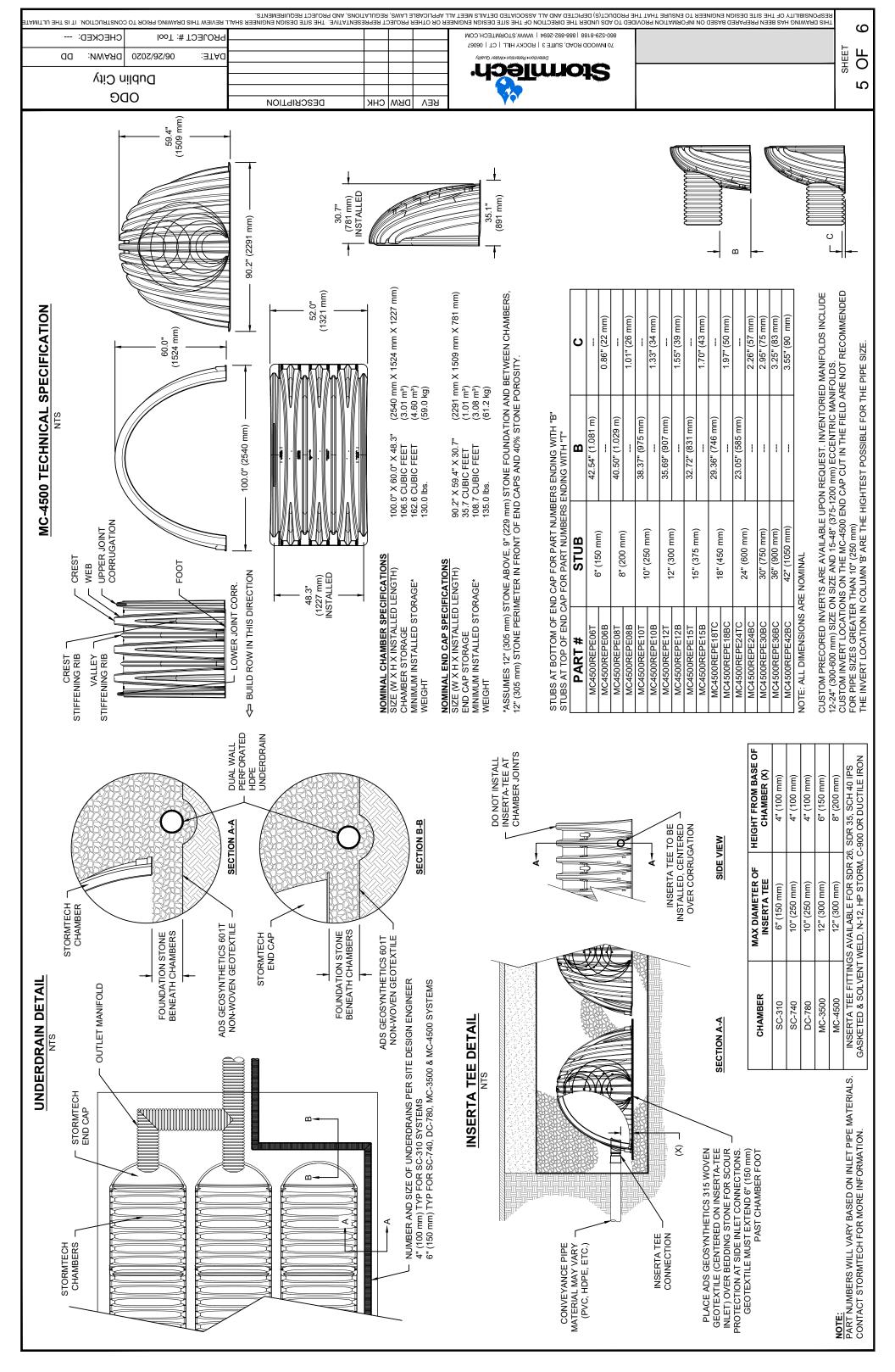
PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.

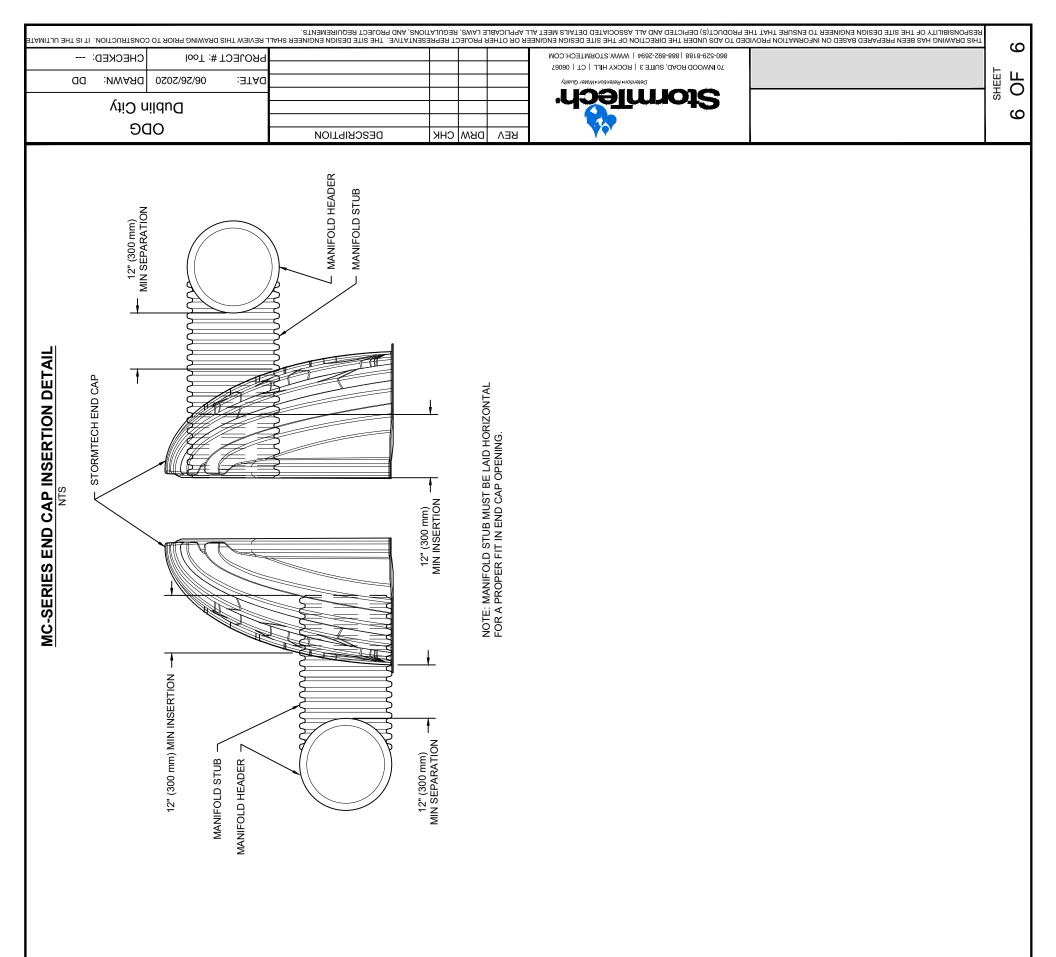
ONCE LAYER 'C' IS PLACED, ANY SOILMATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMS OF THE SITE DESIGN ENGINEER TO ENGINEER THAT THE PRODUCT(S) DEPICTED AND PLL ASSOCIATED DETAILS MEET LAPPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.								ပ
CHECKED:	DJECT #: Tool	ЫЧ				70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067 860-529-8188 888-892-2694 WWW.STORMTECH.COM		
DD SAWN: DD	LE: 06/26/2020	AD				Detention Addention Mater Quality		
v City	nildu					StormTech.		ა თ
90	OC	DESCRIPTION	СНК	мяа	REV			
				•			i	

NOTES:


- с.


- THE "SITE DESIGN ENGINEER" REFERS TO THE ENGINEER RESPONSIBLE FOR THE DESIGN AND LAYOUT OF THE STORMTECH CHAMBERS FOR THIS PROJECT.
- 4
- 5.


۲.

ю.

- .

